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Abstract

This paper develops mathematical models for a proposed production logging tool,
which uses capacitance sensors to measure liquid annulus thickness and liquid type for
a primarily gas-carrying wellbore. A semi-analytical method is devised which uses
Fourier analysis to account for the complicated system geometry and reduces the
problem to singular integral equations over a sensor electrode. Approximate solutions
of these integral equations give expressions for capacitance, which is calculated for
different liquids and varying liquid annuli thicknesses and electrode positions. These
results are compared with capacitance values found using COMSOL Multiphysics, a
finite element package. Good agreement is obtained between these two methods,
with a discrepancy range of 1-8 %. Capacitance values obtained range from 32 to

93 pF/m, and sensitivity is estimated to range from 0.8 to 60 %, depending mainly on
the proximity of the electrode to the liquid and also on the permittivity and thickness
of the liquid layer. Practical implications of the study are also discussed. Realistically
useful measurements, where ~0.2 mm of liquid is detectable, can potentially be made
using an electrode 4-6 mm away from the inner wellbore wall.

Introduction

In oil and gas production, a technical service known as production logging (PL) is used
to identify different fluid phases in the wellbore and measure the flow rates of each. A
sensor carrying tool can be deployed downhole to measure production rates at differ-
ent depths, so that entry points of fluid flow can be located. This serves as a useful
diagnostic tool and can help with well management.

A well producing primarily gas with a small amount of liquid, which could be oil,
water or sometimes a mixture of both, is likely to have an annular flow regime, with
the liquid phase forming a thin annulus on the inside wall of the pipe and the gas flow-
ing in the form of a central core. While the gas flow rate can be measured with exist-
ing PL sensors [1], the thin liquid layer, which may contain more valuable oil, is more
difficult to detect and measure using conventional equipment. A PL tool that can de-
tect and identify this liquid could, for example, find water-producing zones to be
blocked and find areas of oil-bearing formation to be further exploited.

Recently, a PL tool based on inside-out capacitance tomography has been described

[2], which uses measurements of capacitance between multiple electrodes mounted
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around the circumference of a cylinder-shaped tube, and between these electrodes
and the steel casing wall of the borehole. However, since the sensing electrodes are
on a small diameter tool body (42 mm) centralised in a large diameter wellbore
(e.g. 150 mm), it is unclear whether such an arrangement is sensitive enough for
the purpose of measuring a thin liquid layer on the casing wall.

We propose a different measurement arrangement, in which a deployment mechan-
ism is used to place capacitive sensing electrodes closer to the casing, in order to im-
prove the sensitivity of liquid detection. The key aims of the study are to create a
model of a simplified version of this system (Fig. 1) to predict capacitance measure-
ments and to gain insight into factors affecting these values. Other important questions
that this study attempts to answer include the following:

e From a capacitance measurement, can we derive both the liquid layer thickness and
the liquid type (i.e. oil or water)?

e How close to the casing must the electrodes be to detect capacitance changes due
to the presence of a thin liquid layer (bearing in mind that capacitance changes
much smaller than 0.1 pF are difficult to measure with electronics in down-hole
conditions)?

e Given the electrode-casing separation, what are the minimum liquid layer thick-

nesses that the sensor can detect for oil and water?

In Fig. 1, the casing and tool are grounded and the electrodes are held at an electric
potential of +V,. Capacitance values between the electrodes and casing are converted
into a voltage signal through a capacitance-to-voltage converter circuit. The dimensions

used are industry standards, with a 6-7 in borehole casing diameter and a logging tool

Electrode
length, L

r,, radius| g __Electrode
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electrode
from centre

Casing

Fig. 1 Diagram of the geometry of the measurement system
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of 111 inch diameter. The electrode is modelled to have a width of 15 mm and a length
along the casing, L. The range of the liquid layer thickness is between 0 and a few milli-
metres, defined by a typical annular flow of interest. Three liquids of different permit-
tivities were used in the study: water (high permittivity), oil (low permittivity) and salt
water (conductive).

The system was viewed in two different 2D geometries which were used to de-
velop capacitance models both theoretically and by using a finite element computa-
tion package, COMSOL Multiphysics® [3]. The first geometry used was a
simplification of the system into a planar form, where the electrodes and boundaries lie
flat and parallel (see the section ‘Adaptation from real geometry, Fig. 2). The theory gives
a relatively simple solution and so can provide a faster computation of capacitance. A
cross section of the system was used as the second model geometry (see the
section ‘Geometry, Fig. 7), which has concentric boundaries with curved electrodes.

For each of these geometries, mathematical models were derived using general solu-
tions for electrostatic potential satisfying Laplace’s equation and the boundary condi-
tions within the system. The electrode’s potential was equated with the integral of a
continuous distribution of point source potentials on the electrode. From this singular
integral equation, we solve for the charge density distribution and thus the capacitance.
These models calculate capacitances for different liquids, varying electrode positions,
and liquid layer thicknesses for a given set of system parameter values. The analytical
expressions obtained provide insight into the dependence of capacitance on the param-
eters of the system and the liquid layer, and also, the high speed of calculation is opti-
mal for real-time analysis as the PL tool is lowered down the well.

To test the accuracy of the developed theory, the models of the system were then built
with a fine mesh in COMSOL, using the Electrostatics module, and capacitance values
were calculated for varying liquid thicknesses by using parametric sweep studies.

The background theory behind the mathematical models is detailed in the next section;
sections ‘Planar model’ and ‘Circular model’ cover the theoretical (sections ‘Theoretical
model” and ‘“Theoretical model’) and COMSOL (sections ‘COMSOL multiphysics model’
and ‘COMSOL model’) models for the planar system and the circular cross section sys-
tem, respectively, and include results and comparisons of the calculations of capacitance
(sections ‘Results and comparison’ and ‘Results and comparison’). The section ‘Overall
conclusions’ summarises the main conclusions of this paper, the ‘Acknowledgements’

/ Casing (¥=0)
A S '\ _____________ DR
h; Electrode(® constant) <>

Width, 2a Liquid layer- water
(£,=89), salt water
(£,>100) oroil (g,=2.2)

ool (¥=0)
Gas (g,=1) /T

Fig. 2 Diagram of the planar model showing the boundary conditions for the potential, @. h; is the
distance of the electrode from the tool, h, is the distance of the electrode from the casing wall, h is the
distance of the liquid layer from the electrode and the width of the electrode is 2a
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section acknowledges those who have contributed to the study, and the ‘References’ sec-
tion includes a list of references.

Background theory
The theoretical methods devised are based on solving for the distribution of potential
sources along the electrode plate, the integral of which is related to the charge on the
plate. The potential of a point source in two dimensions is given by ¢* = Inr where r is
the distance from the source. The presence of boundaries creates image sources which
contribute an interaction potential term. This term may be quite complicated due to
the different natures and geometries of the boundaries and the geometry of the source
and therefore the potential cannot be solved in closed form. This interaction potential
term is called U throughout the paper and the total potential due to a point source and
the boundaries is referred to as ¢. The total potential due to the distribution of sources
and interaction potentials is @.

As the potential on the electrode is a predefined constant, Vj, a singular integral
equation (see, for example, [4]) can be formed when setting the potential at the plate to
Vj. This will have the form of Eq. (1),

Detocrods — / f2) Injx-¢ dg + / fe) Ude= Vo (1)

electrode electrode

where ¢ is the position of a point source on the electrode and x is position along the
electrode.

It can be shown that for a single electrode plate in an infinite medium, i.e. when U =
0, this integral equation can be solved exactly with the flux density f{¢) having a square
root singular form as § approaches the ends of the plate. The integral equation will be
more complicated when other boundaries are present, and so these need to be solved
using approximation methods. In general, for a plate at —a < x < a,

F©)
(@-2)

The crudest approximation method, which is used to develop the models in this

f8) = (2)

paper, assumes that F(§) is a constant, F. A more accurate method could be developed
by approximating the unknown function F() either pointwise or by an expansion in
Chebyshev polynomials (for example, see [5]). The integral of this charge density distri-
bution over the electrode is defined to be Q

Q= / f(2) de 3)

electrode
And so, assuming F(€) is constant, F, Eq. (3) becomes
Q=nF (4)
The first theoretical method approximates the effect of the boundaries on
the plate as though the image sources were induced by a point source of

strength Q, see (3), at the centre of the plate, so that U does not depend on
¢, This method is accurate provided that the plate is far enough from the
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boundaries and will be referred to as the point strength method. The second
more accurate method requires solving the complete integral equation by inte-
grating both sides over the electrode. The theoretical results are computed
using these models.

The charge on the plate can be found from Maxwell’s first equation in 2D (Eq. (5)),
where E is the electric field, 11 is the unit vector normal to the closed boundary, /, of S,
q is the charge enclosed in the surface S, ¢, is the relative permittivity and ¢, is the per-
mittivity of free space.

VEds=-1 (5)

Eo€r

Using Gauss’ law in 2D, this can be expressed by

dar=-2 6)

Eor

{E
I

1>

When the surface encloses no free charge, the electrostatic potential @ must satisfy
Laplace’s equation, below, since E = -V ®.

Vo =0 (7)

Assuming [ encloses a charged flat plate extending along —a<x<a on y=0, Eq. (6)

becomes
a
(B ~Eryeo ) dx= q )
y‘y:0+ y‘y:07 o E0Er
-a
where Ey\y:or is the y component of the electric field on the top or bottom of the
plate. Using E = -V®, we can express this as
a +
(G, “=a ©
ay y—o- T eogr

-a

The charge on the plate is related to the jump in the derivative of the potential across
the plate. The interaction term U will be continuous across the plate, and so the dis-
continuity is due to the derivative of the Inr term. Differentiating the first term of Eq.
(1) gives

d / f€) Inr d€

electrode _ ; f(&) y
) / TR 1o

oy

In the limit as y—+0, the function (X—§;/2+y2 behaves as a delta function: 4 §(x-¢§).

Using the sifting property of delta functions, we find that
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[T < wafon

Substituting Eq. (11) into (9) and rearranging gives the following expression for the
charge per unit length on the electrode

= —2neoa,/ f(x) dx= -2meoe,Q (12)

The charge is directly proportion to the integrated density function, Q, from Eq. (3).
From (12), we can find the capacitance per unit length, C, between the plate and the
outer pipe (which is grounded).

q

=%

(13)
As the distance between the electrode and casing becomes much smaller than the di-
mensions of the electrode, the system will tend towards the geometry of a parallel plate

capacitor. Its capacitance is expressed as

gogrA

Co ==

(14)

where A is the surface area of the electrode plate and ¢, is the relative permittivity of
the material between the two plates separated by a distance, d. If the volume between
the plates is filled with gas, €, =1, whereas ¢,> 1 if it is filled with a liquid. For a system
with a liquid layer and an air layer sandwiched together, the effective capacitance can

be expressed by that of two capacitors connected in series, i.e. C = % From this,

we can expect the capacitance to increase as the electrode approaches the casing and
as the thickness of the liquid layer increases, since the overall effective ¢, between the
electrode and casing will be increasingly greater than 1. The capacitance should also be
higher for higher permittivity liquids, such as water (g,, = 80), than for low permittivity
liquids such as oil (g, = 2.2).

Planar model

Adaptation from real geometry

For simplicity, the system is first modelled in a planar geometry to obtain esti-
mated capacitance measurements using mathematical methods (section “Theoretical
model’) and a finite element software, COMSOL multiphysics (section ‘COMSOL
multiphysics model’). This model can be viewed as an adaptation of the real circu-
lar system, where only the top half (and therefore one source) is considered (see
Fig. 2).

Theoretical model

General method

The planar system uses Cartesian coordinates (x, y), with the centre of the plate posi-
tioned at the origin. For simplicity, the system is assumed to be infinite in x so that
there are no vertical boundaries or horizontal domain dimensions to account for. This
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allows the Fourier transform of the potential expression to be taken, from which the
interaction term U can be obtained. The Fourier transform of U satistying Laplace’s
equation, (7), is given by the second-order partial differential equation

PUty) ,- _

5 Uty =o (15)
where

Uty) = [ @8 Uix-ty) dix-2) (16)

—oo

U has different forms depending on whether the interaction potential is taken in the gas

region, U, or in the liquid region, U/;. The general functions for U, and Ug are as follows

U, =« cosh((y—h) t) + A, sinh((y-h) t) (17)

Ug = kg cosh((y-h) t) + Agsinh((y-h) ) (18)

where i, A1, kg, and A4 are functions depending on ¢, relative permittivities and the
geometry of the system.

Conservation of electric potential, ¢ =Inr + U, at the boundaries and the continuity of
the normal component of the electric displacement field give four equations:

lnr+UL:0 ) y:h2
ULIUg ; y:h
99g o9,

oy Tty YT

Inr+Uy=0 ; y=-h

(19)

The Fourier transforms of these equations can be solved simultaneously to obtain expres-
sions for the unknown functions. As the plate is surrounded by gas, only L/, is required for the
integral equation, and so, only x, and A, were evaluated. These expressions are given below.

e -hlt g -y 1t -y |t
_ -n ( (i ‘1) o Smh (AT ~ [Tsmh () z))
e coth((hy-h)t) + 2 coth((h; + h)?)

g cosh((hy + h) t)- €5
9 sinh((h; + h) )

Care was taken to ensure that the integrand of the inverse Fourier transform of Uy at

y =0 was not singular at ¢ =0, by evaluating the following equation

N
Uy = 5= / (Ug-0y) &9+ U (22)

where L}*g = limyo Uy and is Fourier inverted analytically to obtain U Ug—US is

even in ¢, and so Eq. (22) can be written

Page 7 of 22
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U=+ / (Ug-U;) cos((x=&) t)dt + U, (23)

b4
0

The integrand is evaluated numerically to obtain I, which is used to solve the inte-
gral Eq. (1). Two different methods were used to solve this equation for electrode
charge and are detailed in the next two sub-sections.
Point strength method
The integral equation for this method assumes that the electrode plate is far
away from the boundaries, i.e. when the plate is much narrower than its dis-
tance to the nearest boundary. Thus, we can say that the interaction with the
boundaries is due to an image source induced by a centralised point source of
strength Q (defined by Eq. (3)) on the electrode. The dependence of the inter-
action term U on (x-§) is negligible provided %»1, where 7 is the distance of
the plate to the nearest boundary. It can therefore be assumed that U/, on the
plate is a constant and is evaluated on the origin x=0, y=0. The plate is as-
sumed to have a width of 2 units, with all geometric parameters scaled ac-
cordingly. On -1<x<1,

1
/ (&) Infx-& 02+ Ugly_o,0Q = Vo (24)
a

Substituting in Eq. (2) and x = cos(6) and & = cos(y), we find

UQ |x:0,y:0_ In2

Q (25)

The capacitance of the plate per unit length can be calculated using Eqgs. (23), (12)
1

and (13), where Q = / f(€)d§ F(§) =F and a = 1. Parameters used for the calcula-
|

tion are given in Table 1 (section ‘Results and comparison’). Due to the as-
sumptions made, this method will lose accuracy as the plate approaches the
liquid layer, but does provide a relatively simple and fast calculation of
capacitance.

Integration method

The integral for this more accurate method is the same as Eq. (1), but now, we inte-
grate over the plate along x as well. Making the same substitutions as in the point

Table 1 Parameters used in calculations for the planar model

Parameter Values used

h; (electrode to tool) 44 mm, 47 mm, 51 mm
h, (electrode to casing) 11T mm, 8 mm, 4 mm

h (electrode to liquid boundary) 0-2 mm: steps of 0.2 mm
Vo 1V

& 1

& 2.2 (oil), 89 (water), >100 (salt water)
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strength approximation method, x = cos(f) and = cos(y), the integrated equation for
the plate, -1 <x < 1, is now written

F/ /(ln|cose— cosy| + Ug) dy df = Vom (26)
0 0
Substituting x and ¢ into Eq. (23) and integrating gives

//Ugdq/dez//ugdwde
0 0 0 0

+ /n/n/mcos((cose—cosw) f) (Ug‘l}g) dtdy db (27)

Q=

As Uy and U; have no 6 or ¥ dependence and as

n

/ cos(tcosf) dO = njy(f) (28)

0

where Jo(t) is the Bessel function of the first kind, Eq. (27) becomes
//Ug dy d@://u; chy d6+/n(]o(t))2 (Ug_U;) ot (29)
00 0 0 0

1
F can therefore be calculated via numerical evaluation of Eq. (26) and as Q = / f(§) d& = nF,
O

capacitance per unit length can be obtained.

COMSOL multiphysics model

Setup

In COMSOL multiphysics, the geometry in Fig. 2 was built using defined global param-
eters for &, hy, hy, € and V,, fixing the width of the electrode at 15 mm. Using the
Electrostatics module from the AC/DC selection, a block of height (/; + &) was defined
to be gas, g; =1, and an upper block of height (/,-/) was defined as a liquid with a
relative permittivity of &. This gave a total height of /; + s, =55 mm: the distance be-
tween the casing and tool. The horizontal length of these domains was finite and
chosen to be 0.15 m, such that the total area of this planar system was equal to half the
area between the casing and tool in the circular model. A thin rectangular slit of height
0.15 mm and width 15 mm represented the electrode.

The boundary conditions were imposed by setting the potential of the lower block’s
lower boundary to zero, the edges of the electrode as terminals at voltage V|, and the
top boundary of the upper block as ground, with a potential of zero. Care was taken to
build a fine mesh with very many points around the edges of the electrode and with
boundary layers within the liquid block so that the parameter /4, and hence the liquid
layer thickness, could be changed in the study (demonstrated in Fig. 3).
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Fig. 3 Snapshot of the mesh built in COMSOL for the planar model studies, showing elements around the
electrode end and boundary layers at the gas-liquid interface

Studies

A parametric sweep was created which varied / so that the liquid layer thickness varied
from O to 2 mm in steps of 0.2 mm. The ‘global evaluation’ gave a capacitance between
the electrode and the casing for each value of /4. The programme integrates the elec-
trical energy density over the system to calculate the capacitance [6]. To cross check
these values, the line integrals of the perpendicular electric field component across the
boundaries of the electrode were taken and summed together to form a closed line in-
tegral. From this, the charge on the plate could be calculated using Eq. (26), and
so the values for capacitance per unit length using this method were evaluated and
compared to the energy density method values. The slight discrepancies between
the values are likely due to the singularity of the electric field on the electrode, in
which case the energy method COMSOL uses will give more accurate results as it
is less dependent on the way the geometry is meshed [6]. These energy method
results were calculated for different plate to casing distances and relative permittivities, ¢,
for each liquid.

Results and comparison
The parameters used in the COMSOL model are given in Table 1.

The geometric parameters were scaled down by a factor of 7.5 mm for the theoretical
model as the plate is assumed to be of width 2 units.

For the salt water results, the liquid was modelled as a perfect conductor and there-
fore we set the parameters /1, = /1, as though there is no liquid layer and the casing de-
creases in radius.

General trends in the capacitance results and the difference between calculation
methods are demonstrated using the following graphs, Figs. 4 and 5. The methods fea-
tured in the graph are the finite element COMSOL model, the theoretical point
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Fig. 4 Planar model: graph of capacitance per metre for varying oil layer thicknesses where the electrode-

casing separation is 4 mm, calculated using COMSOL, both theoretical models and a parallel
plate approximation

strength and integration theories, and also the parallel plate approximation, as
described in the section ‘Background theory, Eq. (14), with a gas capacitor and liquid
capacitor, which are the same width as the electrode, connected in series. Figure 4
shows the capacitance per unit length for an electrode-casing separation of 4 mm
against oil layer thickness, and Fig. 5 shows the variation of capacitance with the
electrode-casing distance for both water and oil. Values for salt water are very similar
to those for water and so have not been shown on this graph for clarity.

It can be seen in Fig. 4 that capacitance increases superlinearly with the thickness of
the liquid present. Figure 5 shows that capacitance is greater, for a given calculation
method, when the liquid has a higher permittivity, i.e. the capacitance of a water layer

1.4E-10 r
N ‘\ —#— Water- Point strength
N
- —+—0il-
1.2E-10 S \\ 0il- Point strength
DNt
N \ —&— Water- COMSOL
S \
5 Water- Integration
1.0E-10 N \
\\ —=—0il- COMSOL

0il- Integration
8.0E-11

—\— Water- Parallel plate

~ ~— 0il- Parallel plate

Capacitance per unitlength/ F/m

6.0E-11
4.0E-11

~

~
~

- ~u

2.0E-11 e
—_—— —=a
0.0E+00 -
5 6 7 4 8 9 10 11 12

Electrode to casing separation/ mm

Fig. 5 Planar model: graph of capacitance/metre against electrode-casing distance for a liquid layer of thickness
2 mm, calculated for both water and oil using COMSOL, both theoretical methods and the parallel
plate approximation. The value for water-point strength at 4-mm plate-casing separation is 7.7x10'°
F/m and so is not displayed on the graph. Lines have been drawn between points for clarity only

Page 11 of 22
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is greater than that of an oil layer. Decreasing the distance between the electrode and
the casing increases the value of capacitance. These relations are all to be expected
given that the effective relative permittivity in the area between the electrode and cas-
ing increases in each case.

The results from the different methods are similar in the trends discussed earlier;
however, the magnitudes of the capacitances calculated are very different.

At hy=4 mm, the approximation for the point strength theoretical model (that the
distance of the electrode to the liquid-gas boundary, /# > 3.75 mm) clearly breaks down
(Fig. 4). It can be seen in Fig. 5 that this method tends towards the COMSOL and the-
oretical integration methods as /, increases, agreeing with the method’s approximation
condition.

The results of the two most accurate methods of the study, the mathematical in-
tegration method and the COMSOL model, agree quite closely with a difference of
only 1 to 7 %. This error increases as the electrode-casing separation decreases
and also varies with the permittivity and thickness of the liquid layer. This is not
too surprising as these variables increase the sensitivity of the finite element
method in COMSOL, requiring more elements as regions become narrower for ex-
ample. Error may also be due to the singular electric fields at the corners of the
plate and potential discontinuities at the boundaries, which are more difficult to
model using finite elements (see [6]) but are dealt with exactly in the theoretical
models.

The integration method capacitance values are consistently lower than the COMSOL
values. This is due to the electrode in the COMSOL model having a finite thickness, ra-
ther than being infinitesimally thin, unlike in the theoretical methods. The voltage on
the vertical sides of the electrode was also set to Vj, and as this would give the elec-
trode a larger effective length, the capacitance is higher.

From Fig. 4, we can see that the capacitance values for the parallel plate ap-
proximation are significantly lower than the COMSOL and integration theory
results, but show a very similar trend. Values are much lower as it does not
account for the interaction of the electrode with the casing and liquid which
extend beyond the ends of the electrode or the interaction with the grounded
tool.

The parallel plate capacitance equation, (14), only holds for when the lengths
of the plates are much larger than plate separation, as edge effects are not
taken into account in the derivation of this formula. This is likely to be why
discrepancies are around 60 % lower for the 11-mm separation, but around
30 % lower for the 4-mm gap, where the plate width is several times larger
than this distance.

For practical implementation, the capacitance sensor can be calibrated by meas-
uring capacitance without the presence of a liquid layer, Cy, for a given electrode
position, and so detection of liquid would be due to measuring a percentage
change in the capacitance. Hence, it is useful to gauge the sensitivity of the
measurement by calculating % where AC is the change in capacitance, C-Cy.

Figure 6 represents the sensitivity of the capacitance measurement with thickness
of the liquid layer for an 11-mm electrode-casing separation. The percentage in-
crease and sensitivity to liquid layer thickness is far higher for the measurements
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Fig. 6 Planar model: percentage capacitance change against liquid layer thickness for 11-mm
plate-casing separation

using a smaller electrode-casing separation, reaching around 25 % for oil and
around 65 % for water at 4-mm separation compared to an 11-mm separation
which only reaches 5 % for oil and 10 % for water, as shown in Fig. 6.

It can be seen from Fig. 6 that one measurement of capacitance will not necessarily
be enough to determine the thickness of the liquid layer if the liquid is unknown, as
below a certain capacitance value, there will be a corresponding thickness for both lig-
uids. In other words, a horizontal line drawn across the graph will cross both the oil
and water lines. However, if the measurement is above a certain value, i.e. the capaci-
tance when a 2-mm oil layer is present, water or salt water can be identified unambigu-
ously and thickness can be calculated, assuming 2 mm is the maximum liquid depth.
The minimum capacitance changes needed to identify water are given in Table 2.

These measurements assume that 2 mm is the maximum liquid depth. Any larger

thicknesses can be modelled, and a new minimum capacitance can be found.

Table 2 Minimum percentage capacitance change needed to identify water presence according
to the planar model

Electrode to casing distance/ mm Minimum percentage change in capacitance (%)
" 6

9
4 26
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If the type of liquid is known, the thickness of liquid on the inside of the casing wall
can be estimated. Further discussion on the practical implications of the capacitance re-
sults can be found in the section ‘Results and comparison’ in the results for the more
realistic circular model.

Circular model
Geometry
The cross section of the real geometry was used for this model, shown in Fig. 7 below.

Theoretical model
General method
A Fourier transform cannot be used for this model as there are no infinite limits in the
geometry. We instead use the Fourier series expansion of the potential using polar co-
ordinates, (1, ), in order to find the interaction potential terms and the integral of the
source density, flry, 0p), over the electrode, where (ry, 8y) is the position of the point
source. r is the distance from the origin, which is the centre of the tool, and 6 is clock-
wise from the origin with 6 =0 at the centre of the top electrode.

The potential due to a point source in an infinite medium, ¢* is written in polar co-
ordinates as

1
(|))k = 5 ln(l‘2 + r02—2rr0 COS(G—GO)) (30)

Equation (30) can be written as two Fourier series, the first is when 7 < ry and the sec-

ond is when r > r,,.

Electrode A
potential, ®=+V,

———————————————————— r, radius of
liquid surface
from centre

r,, radius
of casing

i
! Electrode
' [ angle «
r,, position of
electrode | ¢

from centre r, radius
of tool

Tool
(#=0)

Gas

Casing
(#=0)

Electrode B
potential, @=-V,

Fig. 7 Geometry and boundary conditions of the circular model
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i = -1/r\"

oL = lnrOerz_:lm(fo) cos(m (6-00)); r<ro (31)
i | ro\™

. -1 1o 6-6.)) - 32

o nr+mZ:1m(r) cos(m (0-6)) ; r>rn (32)

U has different forms depending on whether the interaction potential is taken in the
gas region, U, or in the liquid region, U;. The general Fourier series solutions of
Laplace’s equation for U/, and U/, are given below as Eqs. (33) and (34)

Ug = kgolnr+2go + Y (xgm "+ g r*m) cos(m (0-8p)) (33)
m=1

U =xolnr+no + Z(Mmfm + ™) cos(m (0-6y)) (34)
m=1

where K0, Ko0r Agos ALos Agym ALims phgm and iy, are functions depending on m and the
geometry of the system.

These functions were found using the boundary conditions, shown below in equation
set (35), comparing the coefficients and solving simultaneous equations.

o+ Ug=0 ;r=r
U= Uy s r=n
d9; aUg\ (3¢} AU\ (35)
Sg(?*? “al\or ter ) T
o/ +U =0 s r=rg

As with the planar model, only U, is required for the integral equation and so only

Koo Agos Agm and fig,,, were calculated. These expressions are given below

(1— E—f) Inr + Z—‘Z Inrg—1nry

Kgo = . . (36)
Inr- <1— i) Inr- ﬁ Inr,

o ((1— i—f) Inr + 2 lnrc) (Inro-Inry) )

Inri- (1— —j) Inri— 2 Inr
o O (O™07)
w2 (07 (7)) (()71) (@7 +2) (7))

S

Integration method
Only the integration method was used for the circular theoretical model, as the results
obtained for the point strength method are inaccurate for the dimensions of this study
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(see the section ‘Results and comparison’) when the distance of the electrode to the li-
quid layer, &, is h %A &, where a is the width of the electrode. Expressions for the
point strength method can be obtained easily using the same method as in the sec-
tion ‘Point strength method; approximating the electrodes to be flat.

The curvature of the electrode for this model is approximated to having a radius of r,
but with a fixed arc length of 15 mm. The top electrode A is at a radius of r, = and

spans —a < 0 < a, and the lower electrode B is at a radius of r, = rg and spans 5, < 6 < f3,.

We assume that the charge density distributions (Eq. (2)) take the forms fa(6oa)

_Fa P
1 1
(a2-604)} ((B,-60s) (608512

For the two sources, the integral equation is similar to that in Eq. (1) but now in-

and fg(0og) = where F, and Fy are constant along the electrodes.

cludes both sources. Potential on electrode A, —a <0< a, is

o By
/ fa(00a) (al;, + Ualy, ) dBoa+ / fa(608) (93l + Usly, ) dos = +Vo (40)
—¢ B

We then substitute 8 = acos(y), Opa = acos(ya), o = (%) + (52;2[31) cos(yg) and

integrate 0 < ¥ < 1, which is equivalent to integrating —a < 6 < a. This gives

Fa | [ oxlduadu-+Fa [ [ Unlduacy+Fe [ [ opl, dvsc
0 0 0 0 0 0

T

+FB//UB|rAd‘VBd\V
0

0
= + VOT[ (4'1)

On plate B, the integral equation is similar to Eq. (41) but evaluated on rg and the
right hand side is -V}, with the substitution 6 = <B‘L2BZ) + (@) cos(y) instead.

These two integral equations can be used to solve for F, and Fp. The double integrals
over the ¢* terms are evaluated numerically, and the double integrals over U can be
expressed analytically using the Bessel function identity (section ‘Theoretical model,
Eq. (28)).

T

T Kkgolr, Inry + Agol
Uy, dy,dy =12| < .
| [ vy dwatv = +3 (haml 5™ + bigmle,ry™ ) Jo(mB) Jo(m) cos(m(o-1)
0 0 m=1
(42)

Here, x and y represent plate A or B and 6 = (dcosy + @) and 0y, = (ycosy, + x). Fa
and Fp are given by

- ~1Vo (1[04l + Ualry] +1[03l,, + Ual, ) )

I (P.*B|r5 + UB'rJ I [(P:\er + UA|rA} -1 [(p:\‘rg + UA|rB} I {(pyr;\ + UBer
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B nVo-Fg I [(PHrA + UB“J

L (041, + Ual,,|

(44)

In these equations, [ [...] is the double integral from 0 to 1 of ¥ and y,, where x is
the source electrode.

Thus, the capacitance per unit length between each plate and the casing can be
computed.

COMSOL model

Setup

Using COMSOL multiphysics, the geometry in Fig. 7 was built using defined global pa-
rameters for ry, r,, 1, 7, & and V,, fixing the width of the electrode at 15 mm and the
curvature to radius r.. Unlike the theoretical model, where analytical solutions would
have been very difficult to obtain without using the electrode’s radial position as the
curvature of the electrode, we can use a more realistic setup here with a fixed curva-
ture, as it is unlikely to vary with position. Using the Electrostatics module from the
AC/DC selection, the annulus between radius r. and 7 was defined to be gas, g, =1,
and the outer annulus between radius r; and r. was defined as a liquid with a relative
permittivity of & . Two thin curved slits at radius 7, and curvature r,, arc length 15 mm
and positioned 180° to each other, represented the electrodes. The boundary conditions
were imposed as before by setting the potential of the tool surface to zero, the edges of
the electrodes as terminals at voltage V), on the top electrode and -V, on the bottom
and the casing as ground, with a potential of zero. The mesh was built finely with many
points around the edges of the electrode and with boundary layers within the liquid an-
nulus so that the liquid thickness could be changed in the study.

Studies

A parametric sweep was created which varied 1 so that the liquid thickness varied from
0 to 2 mm in steps of 0.2 mm. The ‘global evaluation’ was used to give the capacitance
between an electrode and the casing for each value of r, which is the same as the
method used for the planar model.

Results and comparison
The parameters used in the COMSOL model are given in Table 3.

Table 3 Parameters used in circular model calculations

Parameter Values used

re (tool radius) 21 mm

I, (electrode radial position) 65 mm, 68 mm, 72 mm

1 (gas-liquid boundary radius) 74-76 mm in steps of 0.2 mm

re (casing radius) 76 mm

Vo TV

& 1

& 2.2 (oil), 89 (water), >100 (salt water)

L (length of electrode along z-axis) 20 cm
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The geometric parameters do not need to be scaled for the theoretical results as the

widths of the plates have already been taken into account. For a in the theoretical

15

models, the expression « =5

where r, =7, =rg is in millimetres, is used as the

curvature varies and the arc length is constant. The angular position of the bottom
electrode was set to f; =m—a and B, =1+ a. For the salt water results, the liquid was
modelled as a perfect conductor and therefore we set the parameters r. = 1}, as though
there is no liquid layer and the casing decreases in radius. Data was not produced for
the point strength approximation method as we know that the integration method
gives far more accurate answers from the planar model results (section ‘Results and
comparison’).

The absolute value of capacitance was calculated for an electrode with a length L,
perpendicular to the 2D cross section, of 20 cm, for distances between the electrode
and casing of 11, 8, and 4 mm, respectively.

The general trends in capacitance are shown in Figs. 8 and 9 and are the same as
those of the planar model. The capacitance increases with permittivity and thickness of
the liquid and with decreasing electrode-casing separation. Agreement between the the-
oretical integration method and the COMSOL model results is still quite good, with
similar discrepancies of 1 to 8 %, increasing with capacitance. Possible causes of these
discrepancies are discussed in the section ‘Results and comparison’.

Capacitance sensitivities, Ac—f, reach around 25 % for oil and around 65 % for water

for a 4-mm electrode-casing separation, which is much greater than for 11 mm, which

1.0E-10

—— COM Water layer- 4mm gap

9.0E-11 —+—TH Water layer- 4mm gap

—=—COM 0il layer- 4mm gap
8.0E-11
——TH 0il layer- 4mm gap

—=— COM Water layer- 8mm gap
7.0E-11

—+—TH Water layer- 8mm gap

—&=—COM Oil layer- 8mm gap

—+—TH 0il layer- 8mm gap

5.0E-11 - —=—COM Water layer- 11mm gap

Capacitance per unitlength/ F/m

) | —t— TH Water layer- 11mm gap
~=—COM Oil layer- 11mm gap

A — —THoil layer- 11mm gap

0 0.2 04 0.6 08 1 12 14 16 18 2
Depth of liquid/ mm

Fig. 8 Circular model: graph of capacitance per m against liquid annulus depth, calculated for water, oil
and salt water using COMSOL and the integration method. Results for all three electrode-casing distances
are shown
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1E-10

—— Salt water- COMSOL
- -+ - Salt water- Integration
8E-11 - NN —&— Water- COMSOL
- =¥ - Water- Integration

—&— 0il- COMSOL

- 2% - Oil- Integration

6.E-11

Capacitance per unitlength / F/m

5E-11 ¢

4.E-11

3.E-11 +

Electrode- Casing separation/ mm

Fig. 9 Circular model: graph of capacitance per m against electrode-casing separation for a liquid layer of
thickness 2 mm, calculated for salt water, water and oil using COMSOL and the integration method. Lines
have been drawn between points for clarity only

only reaches 5 % for oil and 10 % for water. These values are similar to the percentage
increases found for the planar model. The minimum percentage changes in capacitance
needed to distinguish between oil and water are given in Table 4. These values assume
a maximum liquid layer thickness of 2 mm and are the same as those in Table 2,
rounding to the highest integer.

The accuracy to which we can measure liquid annulus thickness depends on the
resolution of the capacitance sensor. Assuming a minimum detectable capacitance
change of §C = 0.1 pF (see the ‘Introduction’ section), the resolution of liquid depth that
can be calculated. As the relation of capacitance to liquid depth is superlinear, the
minimum resolution, in other words the largest uncertainty in depth change we could
obtain, is the depth corresponding to the first detected change in capacitance. This
depth resolution, dd,in, can be expressed as i, = d(C = Cy + 6C) and is demon-
strated in Fig. 10. The thickness dd;, is the minimum thickness of liquid needed to
for a change in capacitance to be registered by the sensor.

Figure 10 shows that, given a capacitance measurement, an error in the liquid depth
deduced can be found. Table 5 below gives the minimum depth resolution of the liquid

Table 4 Minimum percentage capacitance change needed to identify water presence according
to the circular model

Electrode to casing distance/mm Minimum percentage change in capacitance (%)
" 6
9

4 25
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Fig. 10 Circular model: demonstration of finding depth resolution using a graph of AC against liquid depth
for two example results. It can be seen from the water graph that the depth resolution decreases as the
liquid layer increases (here from 0.2 to 0.1 mm). 6din is shown for the oil graph and 6C=0.1 pF

annulus, using an electrode of size 15 mm x 200 mm. COMSOL and theoretical values
were averaged to find éd;, at AC=35C=0.1 pF.

Using an 11-mm separation between the electrode and casing will not only give small
capacitance percentage changes but will also require relatively thick liquid annuli to be
registered by the sensor. The smallest detectable depth for oil with an 11-mm separ-
ation is around 30 % of the assumed maximum liquid thickness of 2 mm, whereas
using an electrode-casing separation of 4 mm allows detection of a water layer of thick-
ness 0.05 mm, 3 % of the maximum thickness. Resolution is better for smaller
electrode-casing distances and the sensor will be more sensitive to higher permittivity
liquids.

When considering the practical implications of the results, the usefulness of the
models must be evaluated. The similarity of the measurement conditions to those mod-
elled may have a great effect on the accuracy of the predicted capacitance and liquid
depth estimates. For example, the relative permittivity of a flowing hot gas may vary
by as much as 10 %, and the assumptions that the liquid annulus only consists of
one material and has a continuous thickness around the wellbore are not entirely
realistic. Modelling the system in 2D implicitly assumes that this cross section is
constant along the z-axis. In reality, the edges of the electrode along z and the
affect the measured

variation of liquid thickness down the wellbore will

Table 5 Minimum oil and water thickness resolutions for different electrode-casing separations

Electrode to casing distance/mm  Minimum oil resolution &dmi/mm  Minimum water resolution dyn/mm

11 0.65 036
0.36 0.20
4 0.10 0.05
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capacitance. These results should be compared to laboratory experiments using the
production logging tool to check the accuracy. The methods used in this study, es-
pecially the mathematical integration method, provide useful estimates of measure-
able capacitance and have the potential to be used in downhole measurements so

long as sufficient calibration is performed.

Overall conclusions

The proposed capacitance measurement system has been modelled for two differ-
ent geometries, and two different mathematical models have been developed, one
approximating the interaction potential as being due to a source far from the
boundaries and the other a more accurate method where the interaction potential
term is integrated over the electrode. The circular model is a more accurate rep-
resentation of the real system, and so the results will be more realistic than those
from the planar model. Despite this, there is generally quite good agreement be-
tween the two different geometries. The theoretical method which gives an ap-
proximate solution by satisfying on average the potential integral equation is far
more accurate than the point strength method, especially when the electrode
tends towards the liquid layer where the far-field approximation used breaks
down.

Reasonably good agreement is obtained between the COMSOL finite element model
and the integration method, showing that this mathematical model gives realistic re-
sults. Percentage discrepancies between the two methods increase with capacitance,
from 1.5 % for 0.2 mm oil layer with an 11-mm electrode-casing separation to 8 % for
a 2-mm salt water layer with a 4-mm separation. This issue can be reduced by calibrat-
ing against a dry condition capacitance measurement and measuring the percentage
capacitance change instead.

Generally, the capacitance and measurement sensitivity were found to in-
crease with the depth and permittivity of the liquid and with proximity of the
electrode to the casing, as expected. For the example geometry used in this
paper, capacitance per unit length values ranged from 32 pF/m with a sensitiv-
ity of 0.8 % (for 0.2 mm of oil using 11-mm electrode-casing gap) up to
93 pF/m with a sensitivity of 60 % (for 2-mm layer of water, measured with
the electrode 11 mm from the casing).

On a practical level, one of the main issues of the measurement system is the
large overlap between values of the capacitance of oil and water for different thick-
nesses. A capacitance value is likely to give two different thicknesses depending on
which liquid is present, and so another independent measurement of either the
thickness or the relative permittivity of the liquid should be added to fully charac-
terise the liquid layer.

If the liquid is known, the liquid depth can be estimated from a capacitance measure-
ment. The accuracy of this depth depends on the resolution of the capacitance sensor.
Assuming that an electrode of size 15 mm x 200mm is used and that the minimum
capacitance change a downhole electronics circuit can detect is 0.1 pF, the minimum li-
quid depth that can be registered by the sensor range from 0.05 mm of water (using a
4-mm electrode-casing separation) to 0.65 mm of oil (using an 11-mm electrode-casing
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separation). These values also represent the largest errors in deduced depth, as the
depth resolution improves with increasing capacitance.

Overall, the theoretical method developed is useful and could provide fast real-time
analysis for a downhole capacitance sensor. The results should be checked against ex-
perimental measurements, but, with careful calibration, the model could potentially be
used to detect liquids with a relatively small range of error, provided the electrode is
close enough to the liquid annulus.
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