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Abstract

Understanding domestic electricity consumption behaviour is very important for
planners and operators of electrical networks. Distribution Network Operators (DNOs)
are installing monitoring devices at the low-voltage (LV) substation level. However,
monitoring devices need to be allocated with consideration. This paper seeks to
quantify the relationship between key information from a substation electricity
profile, and the type of properties it supplies. Often the number of properties is the
most significant predictor for key substation features. Additionally, the proportion of
properties which are small-to-medium enterprises (SMEs) affects nearly all key
features considered: from the overall load mean and variance, to the annual trend, to
peak behaviour. Knowing substation key features is of direct use, for example where
to prioritise monitoring. However we also demonstrate how these key features can
be used within a so-called ‘buddying’ framework to estimate the load every half-hour
for individual properties.
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Introduction
Over the next few decades, electricity demand on the low-voltage network is expected

to increase and become more irregular with the uptake of low carbon technologies

such as electric vehicles and photovoltaics [1]. The grids’ changing demands mean that

Distribution Network Operators (DNOs) need to be able to better predict electricity

usage and evaluate the stability of their LV networks. Network models enable load flow

analysis, and validations of potential energy reduction schemes such as demand side

response or energy storage devices [2].

So across the UK DNOs, with support from the regulatory body OFGEM, are

researching into strategies which will ensure electricity continues to be supplied safely

and reliably, and in a manner that has minimal impact upon the customer [3]. Before

monitoring devices, low-voltage electricity customer demands could be estimated

through the after diversity maximum demand (ADMD) procedure, or aggregates

estimated using the specifications of ACE Report No. 49 (ACE49) [4, 5]. Perhaps the

most common estimates for individual load on the low-voltage are provided by Elexon

[6], which only distinguishes between households with overnight storage heaters and

those without, providing a smoothed approximation. However, for use within a

network model for power analysis, the volatility and peak demands are required. So to
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match evolving electricity consumption on the low-voltage network, new methods are

being developed to predict the electricity load of low-voltage customers, both on an

individual level and aggregate level, such as [7–9].

A key development in monitoring is Smart Metering. The UK expects to complete

their smart meter roll out by 2020, which potentially provides half-hourly load readings

for households. Each household represents a separately metered point on the network,

and is allocated a unique meter point administration number (MPAN). Smart meter

data helps DNOs assess the LV network headroom [10], the effect of energy storage

[8], and the network renewable capacity [11]. However, a DNO is charged for smart

meter data [1] so approximations to half-hourly household demand are required, which

is a not-trivial task since load on this individual level is volatile.

Alternatively, a DNO can install monitoring devices at LV substations, which mea-

sures the aggregate load every half hour for all households on the substation, which

may be up to 500 households. However, ideally, this monitoring would be kept to a

minimum, and key electricity behaviour features would be available without monitor-

ing. This paper seeks to quantify the relationship between key information from

substation monitoring, such as the maximum demand, or the time of the peak load,

with information available without monitoring, such as the number of domestic or

small-to-medium enterprises (SMEs) a substation supplies.

The findings of this paper two-fold. Firstly, we show that we can estimate key electri-

city demand features at the aggregate level. This information alone helps DNOs plan

and manage, for example, knowing the average and peak load at a substation enables a

DNO to make informed decisions regarding load management via storage devices [8].

Secondly, we demonstrate that this method can be used within a so-called ‘buddying

framework’ [12] to provide a realistic half-hourly load profile for a single household.

Method
The data is at the half-hourly resolution for 135 substations, from Monday, 19th May

2014 up to Monday, 16th May 2016, precisely 104 weeks. Each substation provides

electricity for 2 to 402 MPANs. Monday, 19th May 2014 (00:00) to Sunday, 17th May

2015 (23:30) is referred to as Year 1, and Monday, 18th May 2015 (00:00) to Sunday,

15th May 2016 (23:30) is referred to as Year 2. Each year has 17,472 half-hours. The

substations are located in Bracknell, UK, where data has been collected as part of the

Thames Valley Vision (TVV) project. Bracknell is a city in the South-East UK, and is

home to many large companies and the local network is typical of much of Britain’s

network, and therefore the lessons learned here can quickly to applied nationwide [13].

Regarding the predictor variables, we select as simple and straightforward a set of

predictor variables as possible, relying only upon information already available to a

DNO. For each substation we categorise the connected MPANs based upon their pro-

file class. Standard, domestic households are profile class 1, domestic households with

overnight storage heaters are profile class 2, and small-to-medium enterprises (SMEs)

are profile class 3 or above. For simplicity, we group all SMEs together. Since photovol-

taic generation greatly affect electricity load behaviour, and is also information cur-

rently available to a DNO, we further note the number of generation MPANs on each

substation, where each generation MPAN relates to a separate, secondary, MPAN

allocated for a property with, say, solar panels. Lastly, for a substation without
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monitoring, a DNO has access to its’ maximum demand indicator (MDI) reading. This

value is the maximum demand in an instant, so is greater than the maximum at the half-

hour resolution. Since we will be interested in predicting peak behaviour, the MDI is likely

to be an important predictor. The MDI reading used here is for the period 1st January

2014 to 31st December 2015. We consider the proportion of MPANs in each of these

categories, along with the number of MPANs, as possible predictor variables, see (1).

We consider nine features, that is nine response variables Ri, i = 1,…,9, which a DNO

would like to estimate for substations without monitoring. These response variables

can be classed into three primary areas of interest to a DNO: general features, annual

trend and peak behaviour. Nonetheless, this method could be applied to predict

secondary features such as the ratio of weekday load to weekend load. The first three

response variables refer to general features:- R1: Mean load per half-hour over the 2

year period; R2: Standard deviation over the 2 year period; R3: The maximum load (in a

given half hour) over the 2 year period. To inform long term decisions, a DNO needs

to predict the annual trend, thus the next two response variables are:- R4: The normal-

ised difference from Year 2 to Year 1; R5: The standard deviation between Year 1 and

Year 2. The network is under the most stress during peak load, so understanding peak

behaviour is especially important, so the last four response variables are:- R6: The mean

time of the daily peak over the 2 year period; R7: The standard deviation in the daily

peak position over the 2 year period; R8: The mean peak value; and R9: The standard

deviation of the peak value.

We use the generalised additive model (GAM) to estimate each response variable Ri,

i = 1,…,9,

Ri ¼ f1 No:MPANð Þ þ f2 Prop:Genð Þ þ f3 Prop:PC1ð Þ þ f4 Prop:PC2ð Þ
þ f5 Prop:SMEð Þ þ f6 MDIð Þ; ð1Þ

where the functions f1, to f6 are smooth functions estimated using a thin plate regres-

sion spline. A GAM is flexible to several predictor variables, and enables one to easily

interpret which variables are significant. An alternative model would be multiple linear

regression, however as this assumes a linear relationship between the response and pre-

dictors, it may be unsuitable. Whereas, if the relationship is in fact linear, the GAM

model will reduce to the linear model, making a GAM model the most general choice

of model. A DNO would prefer a model that requires little information, so if a particular

response variable is found to be insignificant for a given response variable, it is preferable

to identify this and remove the insignificant predictor from the model. The GAM model

is implemented in R using the mgcv R package [14], which also provides a p-value for

each predictor. For a given Ri, should the p-value be greater than 0.05 for a predictor, one

can state that the predictor is not statistically significant for the key feature in question,

thus the corresponding function f is set to zero. The response variables R1, R2, R3, R5, R6,

R7, and R9 are strictly positive (Fig. 1), so we assume the response follows a Gamma distri-

bution. For R4, which appears symmetrical, we assume a Gaussian distribution, and R8,

which is skewed, we assume a log Gaussian distribution, see Fig. 1.

To predict the response variables for a single substation s, the model is run without

s, then the response variable for s is estimated (leave-one-out analysis). The estimations

are compared to the actual values using a root-mean squared error (RMSE). To
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compare the models for the different key features to each other, the RMSE is standar-

dised by dividing it by the mean for each response variable. Without this normalisation,

errors for features like the mean difference between years (which is small) will appear

smaller than for features like the maximum load (which is large). It also enables a

comparison between features that are measured by half hour with features that are

measured in kWh.

Results and discussions
The response variables, and the corresponding statistically significant variables, with

the p-value, are provided in Table 1. The smoothness parameters that control the

trade-off between fit and smoothness, is selected by minimisation of the generalised

Fig. 1 Nine different summary measurements (response variables) from the half-hourly electricity load, over
104 weeks, of 135 substations in Bracknell, UK. The actual value for the response variable R1,…,R9 for each
substation (grey) ordered by increasing size (to indicate distribution), along with the corresponding
prediction (empty circle) from the model specified by (1) and Table 1.The x-axis relates to the substations
(which are ordered differently for each subplot so that the response variables ascend)

Table 1 The error (RMSE) from the model predictions

R Key feature (unit) RMSE Stnd. RMSE GCV

6 Peak: mean position (half hour in day) 3.811 0.115 0.0080

8 Peak: mean value (kWh) 21.375 0.310 0.1064

1 Overall mean (kWh) 15.677 0.397 0.1373

2 Overall standard deviation (kWh) 6.751 0.409 0.1434

7 Peak: standard deviation of position (half hour in day) 3.054 0.530 0.1856

4 Trend: mean difference between years (kWh) 0.076 0.733 0.0033

9 Peak: standard deviation of value (kWh) 16.662 0.772 0.1805

3 Overall maximum (kWh) 224.21 0.786 0.2585

5 Trend: std. dev of diff. Between years (kWh) 0.141 0.928 0.0403

The standard RMSE error allows comparison across the nine models. The table is ordered by performance, that is the
response variable most accurately predicted is first. A small GCV score means a better fit of the model
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cross validation score (GCV) [15]. These scores are also provided in Table 1, where a

smaller GCV value indicates a better fit of the model.

The standardised RMSE suggests that peak mean position R6 and value R8 are the

easiest to predict (Table 1), which is good for a DNO. The RMSE of 3.811 for peak

mean position R6 indicates that on average, the peak is only 2 h incorrect. However, as

90 of the 135 substations (67%) have a peak mean position R6 between 5.30 pm (half

hour 35), and the maximum peak mean position of 7:02 pm (half hour 38.08), this

RMSE is perhaps unexpected (Fig. 1). The standard deviation of the year to year

difference R5 is the most difficult to predict, but as there is little variation in R5, this is

of little concern. However, the maximum demand for a given half-hour R3 varies

considerably, and the model struggles to capture the high users (Table 1 and Fig. 1).

Surprisingly the MDI reading is not significantly related to the maximum R3 (Fig. 2).

This may be because the MDI reading is for a different time period. The two outliers

for R3 are not unusual substations, they supply 134 and 133 MPANs, nearly all of which

are profile class 1 (standard domestic), and none of which are SMEs. The mean loads

for these two outliers are 85KWh and 57KWh - nothing extreme that would explain

their extreme maximum demand. Moreover, these two outliers are not the same out-

liers in R9, the standard deviation of the peak value. These two outliers supply a larger

number of MPANs, 203 and 304 which would indicate that there would be less

variance around their peak behaviour, not more. The model also struggles to capture

the low mean consumption R1 (Fig. 1), however, as the values are small, and the load is

overestimated, this inaccuracy is of little concern to a DNO. The proportion of

generation MPANs on a substation only affects the standard deviation of the annual

trend R5 (Fig. 2).

Unsurprisingly, the peak position R6 depends on the proportion of MPANs which

have overnight storage heaters. However, so does the annual trend behaviour - both the

mean R4 and standard deviation R5. For the majority of substations, the time of the

daily peak R7 does not vary much. Nonetheless, for the few substations which do

present a large standard deviation in peak position, the model cannot accurately predict

this behaviour (Fig. 1).

Fig. 2 The p-value, that is the statistical significance, of each predictor for each response variable. When the
p-value is larger than 0.05, we consider the predictor to be insignificant and do not include it in the model
(represented by a white square)
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Application to buddying

In this paper we refer to a ‘smart meter profile’ as the reading of the electricity load of

a property every 30 min. Buddying is a process which assigns a smart meter profile to a

household that does not have a smart meter. Therefore, it is an important tool for a

DNO, since even if smart meter data can be purchased, it is likely to be expensive [16].

However, DNOs can install high resolution monitoring at the substation level and thus

understand the aggregated demand, and potentially infer the customer demands [12].

Using a genetic algorithm, Giasemidis et al. [12] assign a smart meter profile to domes-

tic customers based on demand at the substation, and households’ quarterly meter

readings. Their genetic algorithm assigns properties on a substation to a particular

smart meter profiles in a manner that minimises the difference between the estimated

aggregated demand, and actual aggregated demand (from substation monitoring), and

it also minimises the difference between the actual daily load (from quarterly meter

readings) and the daily load of the assigned smart meter profile. The authors explore

different weightings applied to these two measures. A diagram to illustrate the genetic

algorithm is provided in Fig. 3.

To avoid monitoring at the substation, and to avoid relying upon (often inaccurate)

quarterly meter readings, we propose a genetic algorithm which uses the predicted key

features instead. We use smart meter data for 223 domestic properties over the same

time period used for the substation data. The domestic customers are located in

Bracknell, UK, where data has been collected as part of the Thames Valley Vision

(TVV) project.

The buddying algorithm experiments with different combinations of Smart Meter

profiles assigned to one substation. Note that one of the 223 Smart Meter profiles can

Fig. 3 The genetic algorithm assigns Smart Meter profiles randomly to households on a substation. This is
done several times to create several ‘populations’. Each population is assessed according to a fitness
function. Pairs of populations ‘crossover’ according to fitness (the two most fit, followed by the next fittest
pair and so on). The ‘crossover’ means that from the two Smart Meter profiles assigned to a single house
from the two populations, one profile is chosen at random. Applying this process for each household on a
substation gives a new population. To avoid converging to a local optimum, each household has a small
probability of being replaced with any of the Smart Meter profiles available. The new populations are
assessed according the fitness function, and the process is iterated
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be assigned to several households on a single substation, that is, we are essentially

grouping households into one of 223 categories. The aggregate load from this estimated

population is calculated and compared to the actual load at the substation. The

estimate and actual load is only compared at two points (whereas [12] aim to match

every half hour over several weeks). That is, the fitness function proposed here mini-

mises the mean squared error (RMSE) of the estimated mean peak value, and the mean

half-hourly load,

F ¼ w P‐R8j j þ 1‐wð Þ A‐R1j j ð2Þ

where P is the mean daily peak load from the aggregated profiles, and A is the

half-hourly average load from the aggregated profiles. We experiment with different

weighting assigned to peak versus mean, w = 0,0.1,…,1, and find that w = 0.9

(most weighting on matching mean peak load), is optimum. However, to three

decimal places there is no difference in the median RMSE for w = 0.6, 0.7, 0.8, 0.9

and 1 (median RMSE of 0.011, see Fig. 4).

As a comparison, we also consider a fitness function that minimises the difference for

every half-hour over an average day, a calculation only possible with substation

monitoring,

G ¼ √
X

Lh‐lhð Þ2
n o

ð3Þ

where the summation is over h = 1,..,48, Lh is the average load at half-hour h from the

aggregated profiles, and l h is the actual average load at half-hour h from the substation

monitoring. Using fitness function G (Eqn. (3)) instead of F (Eqn. (2)) actually results

in a larger error (median RMSE of 0.199, see Fig. 4). This highlights the problems that

can occur when using averages to capture peak behaviour.

To reduce computation time, we impose the limit that it is only possible for 10% of

properties on a substation to be allocated the same smart meter profile. The genetic

algorithm is implemented using genalg, a package for the statistical software R.

Fig. 4 The root mean squared error (RMSE) when the genetic algorithm is implemented with fitness
function F (eq. (2)), which uses estimates for the mean peak value and mean half-hourly load; and fitness
function G (eq. (3)) which uses the actual average daily load, obtained from substation monitoring. For
clarity, one outlier (the same outlier) from both models is not shown here
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Conclusion
The effect on electricity load of the type of MPANs a substation supplies have been

quantified, allowing predictions on the overall load, the annual trend, and peak behav-

iour - with greatest success in predicting mean peak load and position, and overall

mean and standard deviation. Generally, the number of MPANs, the MDI reading and

the proportion of SMEs are the strongest predictor variables. The importance of the

MDI reading is reassuring for DNOs since it confirms the relevance of their current

methods. The proportion of profile class 1 customers is required when estimating an-

nual trend features, and the proportion of profile class 2 customers (overnight storage

heater customers) is required when estimating the peak position and annual trend. The

proportion of generation MPANs has little effect. However, the highest proportion of

generation on a substation was only 10%.

For a substation without monitoring, we accurately estimated range of key features of

value to a DNO. Therefore the learning gained from current monitoring can be ex-

tended to many more substations. This is especially true if the substation does not

exhibit behaviour at the extremes, for example, the model did not accurately estimate

the maximum load for two substations which exhibit a very high maximum, nor two

different substations which have a large range of around the average peak value. How-

ever, further analysis showed nothing special about these outliers, suggesting that

factors outside of those considered here affect peak demand. Should identifying these

outliers be imperative, only monitoring would be able to inform the DNO. Nonetheless,

for the majority of features, all substations were predicted with reasonable accuracy.

Lastly, we showed how our predictions for mean peak value, and mean half-hourly

load, can be used within a buddying framework [12]. Aggregating across assigned smart

meter profiles on a substation, we matched the substation behaviour accurately, even

when compared with alternative methods which require substation monitoring. There-

fore, the methods presented in this paper would allow a smart meter profile to be

assigned to a household without requiring monitoring at the substation, nor requiring

quarterly meter readings. A DNO can use these smart meter profiles within a network

modelling environment, and make planning and management decisions. For example,

electric vehicles and solar panels can be added (see [17, 18]) to the virtual network to

inform decisions about reinforcements.
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