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Abstract
Introduction: We solve the gas dynamics (Euler) equations, augmented by adding a
fourth equation governing the fraction of unburnt gas, in a number of cylindrically
symmetric configurations of the pipe system.

Case description: The purpose is to test several duct profiles to see which one favors
a higher reduction of the residual noxious gases, at the end of a car’s exhaust pipe.

Discussion and evaluation: It is found that this purely geometric factor does play a
role in the environment’s purification accomplished by the catalytic converter. This is
possibly due to the longer time spent by the noxious gases resident inside the device
when this has certain profiles, though at the price of a little higher temperature attained.

Conclusions: It seems that geometric factors play a role in reducing cars’ noxious
gases by means of catalytic converters. A more precise analysis should be formulated
as a mathematical inverse problem.

Keywords: Catalytic converters, Exhaust pipes, Generalized Euler equations, Unburnt
residual gas

Background
An important issue related to the problem of air pollution is the functioning of an increas-
ing number of cars, fed by traditional fuels. In the 2003 review paper [11], it was pointed
out that in the previous 60 years the number of vehicles has increased from about 40
to over 700 millions, predicting a further increase of several hundreds of millions in the
forthcoming years.
A possible remediation, capable to control and hence to limit harmful effects of air

pollution has been for many years represented by the adoption of suitable “catalytic con-
verters”. Indeed, a few periodicals and many books exist which address specifically these
issues.
A catalytic converter is a device capable to control the car exhaust emissions, trans-

forming the toxic gases generated by internal combustion engines into less toxic or even
harmless inert products by means of catalytic oxidation and/or reduction.
Catalytic phenomena are also important in many other fields, such as industrial chem-

istry, combustion science, chemical engineering, besides automotive engineering and
environmental sciences, as is witnessed by a number of specialized periodicals fully
devoted to the them.
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“Two-way” converters combine oxygen with carbon monoxide (CO) and various
unburnt hydrocarbons to produce carbon dioxide (CO2) and water vapor, respectively,
through oxidation reactions. For instance, 2CO + O2 → 2CO2. “Three-way” devices,
transform, in addition, oxides of nitrogen (nitric oxide, NO, and nitrogen dioxide, NO2)
reducing them to nitrogen, N2. The catalytic devices contain a catalyst support whose
core is a ceramic monolith with a honeycomb structure, the catalyst consisting of some
precious metal such as platinum (good for both, oxidation and reduction), or palladium
(good for oxidation), or rhodium (good for reduction).
A review written in 2014 [7] reports advances made on automotive catalysts over the

previous four decades. Research work on this subject addresses several aspects, such
as numerical models, computational fluid dynamic models, design of catalytic convert-
ers, laboratory experiments, and development of catalytic materials; see also [15] for a
review concerning works on automobile catalytic converters carried out up to about 2013,
as well as future perspectives. Some relevant results concerning autothermal catalytic
combustion can be found in the recent works [4–6].
This paper concerns the design of catalytic converters. More specifically, its purpose is

to attempt to devise the optimal shape of a car’s exhaust systemwhere a catalytic converter
is lodged, aiming at obtaining the smallest residual noxious gas concentration at the end
of the pipe. We consider a simple one-dimensional model where only a single gas species,
undergoing a phase change, since the burnt and unburnt phases coexist.
The chemical reactions occurring inside the catalytic device are also ignored. Despite

its simplicity, this model, apparently, provides significant results, in good agreement with
the experimental measurements accomplished by the company Magneti Marelli S.p.A.
We solved a system of four inhomogeneous coupled gas dynamics equations, namely

the (three) Euler equations with some source terms, plus a fourth equation which
describes the dynamical behavior of the unburnt residual (noxious) gas’ fraction, in
a duct of variable cross-section. The source terms are due to a number of phys-
ical and chemical effects, such as gas-wall friction, thermal exchanges, and chemi-
cal reactions. From the mathematical standpoint, this is a system of four nonlinear
hyperbolic partial differential equations termed balance laws, rather than conserva-
tion laws, since the sources destroy the basic conservation properties of the classical
compressible Euler equations of gas dynamics. The system of equations is appropri-
ately “closed” using an appropriate state equation, and is supplemented with initial and
boundary conditions.
Needless to say, the fully nonlinear character of such balance laws makes their theory

as well as their numerical treatment highly nontrivial. In particular, adding source terms
to conservation laws implies that successful algorithms like finite volumes and Godunov
schemes do not work well as they do with conservation laws, since they are conserva-
tive schemes. A better numerical treatment has been realized resorting to certain kinetic
schemes [1, 13], and in particular to the so-called AHOp (Asymptotic High-Order) finite
difference schemes, developed in [2, 3].
The aforementioned system of equations can be simplified taking into account the

cylindrical geometry of the device, even though it has a variable cross-section. This set-
ting includes pipes and few components such as precatalyzer, catalyzer, and mufflers. In
fact, the aforementioned equations can be averaged over each section of the system, thus
reducing the space dimensionality of the mathematical problem from three to one space
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dimensions [13]. We used real data, provided by the Magneti Marelli at the time when
the Masters thesis in [13] was written.
We should point out two sensible issues, which represent limitations of the

model. One is that, in general, there are many reacting species in the flow of
the exhaust gas through a given catalytic converter, while here we consider a
simplified model where only a single gas species is present. The other is that the
reactions actually take place on the surface of the catalyst, while the temperature
we used in the reaction rate is the gas temperature (and not the temperature of
the surface of the catalyst). These can be considered as some kind of approxima-
tions but, nevertheless, our results match well with the experimental data provided by
Magneti Marelli [13].
In this paper, we have implemented somewell-established algorithms, namely an AHO2

scheme, to solve the four aforementioned balance laws in a number of configurations
of the pipe’s profile. Thus, we explored the effects of the pipe geometry on the residual
fraction of noxious gas at the end of the pipe, that is the amount of the pollutant which is
injected into the environment (into the atmosphere).
The main results are the following. First of all, the original configuration adopted by

Magneti Marelli turned out to be rather satisfactory, close to the best that one could
design. Playing with the geometry, however, it is possible to identify some profiles for
which a further reduction, up to about 6%, of the residual gas can be obtained. We spec-
ulate that this positive effect of the geometry might be due to the fact that some ripples,
some corrugation, in the duct’s profile imply a longer time for the gas to linger around the
catalytic material, thus increasing the efficiency of the latter. The price to pay for this is
that the maximum temperature attained by the gas turns out to be a little higher than in
the case of the Magneti Marelli’s device.
Here is the plan of the paper. In section “Case description: The basic problem and its

mathematical formulation”, the basic problem is described, and a mathematical model is
formulated. We omit the detailed description of the numerical methods we used, i.e., of
the numerical treatment of balance laws, since this is not the focus of the present investi-
gations, besides being not new. The interested reader might also consult, e.g., [8, 10, 16].
In section “Discussion and evaluation: Numerical results obtained varying the duct’s
geometry”, the numerical results, obtained varying the pipe’s geometry in a number of
ways, are shown, and some conclusions are then drawn in the final section “Conclusions”.

Case description: The basic problem and its mathematical formulation
Here is the basic mathematical problem and its mathematical formulation. A catalytic
converter is a device whose purpose is to filter out, possibly to eliminate, the noxious
gases flowing into the environment from the end of the cars’ exhaust pipes, Fig. 1
A mathematical model can be constructed for a single gas species, which undergoes a

phase change (since burnt and unburnt fractions will coexist), along the following lines:

• the Euler equations of gas dynamics have to be supplemented with an additional
equation, which describes the time evolution of the fraction of noxious gas;

• a simplified (one-dimensional) geometry can be adopted;
• a closure equation is needed;
• suitable initial and boundary conditions are prescribed.
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Fig. 1 Various parts of a catalyzer system. (By courtesy of Encyclopaedia Britannica, Inc., copyright 2006; used
with permission)

The three classical Euler equations of gas dynamics, averaged over the cross section,
A = A(x), are

⎧
⎪⎨

⎪⎩

∂t(Aρ) + ∂x(Aρu) = 0 (mass conservation)
∂t(Aρu) + ∂x(A(ρu2 + p)) = 0 (momentum conservation)
∂t(AE) + ∂x(Au(E + p)) = 0 (energy conservation).

(1)

Here ρ,u, p, and E are density, velocity, pressure, and total energy, E := ρe + ρu2/2,
being e the specific internal energy (the internal energy per unit mass), and ρu2/2 the
kinetic energy. Since we have three equations but four unknowns, a closure relation is
needed: If we assume the gas to be ideal and the flow homentropic within the pipe, then
p = (γ − 1)ρe, with γ = cp/cv the specific heat ratio (the adiabatic exponent), cp and cv
the specific heats (1 < γ < 2). Hence, we can write E = p

γ−1 + 1
2ρu

2.
Moreover, in case of an exhaust pipe, we should take into account some additional

phenomena, as follows.

• Friction with the pipe’s wall: When a fluid travels through a pipe, a friction
develops as a hydraulic resistance due to transfer of momentum to the solid wall.
Thus, a force is exerted on each surface unit of the solid wall. Mathematically, this
amounts to introduce a term like

−Cf w ρ
u2

2
, (2)

that can be obtained from the so-called Darcy’s empirical formula [12], on the
right-hand side of the moment equation. The numerical value of the friction
coefficient, Cf , that in the literature is given by the Darcy-Weisbach equation, was
obtained by a series of tests conducted by Magneti Marelli [13]; w in general a
function of x, is the perimeter of the duct section.

• Friction with the honeycomb structure of the catalyzer: A honeycomb structure
for the catalyzing (ceramic) material is chosen to maximize the surface exposed to
the noxious gas of the chemical reagents, Fig. 2. It implies, however, an additional
obstacle to the gas flow through the pipe, hence giving rise to a decrease of speed and
pressure (due to a resistance exerted on the gas). From the mathematical standpoint,
this amounts to introduce a term like

−Cρu (3)
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Fig. 2 A three-way catalytic converter. Note the honeycomb structure. (By courtesy of AA1Car; reprinted with
permission)

again on the right-hand side of the moment equation. This choice is empirical, and
the friction coefficient, C, was determined experimentally [13]. Usually, some form of
the Darcy’s law is assumed for gas flowing through porous media, at least when the
regime is laminar.

• Heat exchanged by conduction: Thermal exchanges between gas and external
environment are governed by Newton’s law, according to which the heat transfer
between a surface (the wall) at temperature θw and the fluid at temperature θ , is given
by the quantity

−wh(θ − θw), (4)

where w = w(x) is the duct’s perimeter (Note that w = 2
√

πA, in terms of the cross
sectional area, A), h (evaluated experimentally [13]) is the heat transfer coefficient.
This term will be introduced on the right-hand side of the equation for the energy
conservation.
These terms affect the right-hand sides of Euler equations. Our model must include,
in addition, a fourth equation, which represents “the continuity equation for the
unburnt gas”. Consider two states, the burnt and the unburnt gas. The unburnt gas is
transformed into burnt gas through

• A chemical reaction, governed by the Arrhenius’ empirical law,

K(θ) = K0 exp(−E+/Rθ). (5)

widely used in chemical kinetics, where K0 represents a (constant) reaction rate and
E+ is the activation energy, and R is the gas constant [14]. Therefore, we augment
the previous system adding to it the equation

∂t(Aq0ρz) + ∂x(Auq0ρz) = −q0ρzK(θ), (6)

where q0 represents the amount of released heat per mass unity, and z = z(x, t)
denotes the fraction of unburnt gas. Clearly, 0 ≤ z(x, t) ≤ 1, and 1 − z(x, t)
represents the burnt gas fraction.
Adding such an equation, however, the first three equations have to be further
modified, since the total energy becomes

E = ρe + ρ
u2

2
+ q0ρz. (7)
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This relation represents a balance among internal energy, kinetic energy, and energy
involved in the burnt gas fraction. Note that the chemical reaction appears here, in
such last equation. Finally, the system of four equations (balance laws) will be

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t(Aρ) + ∂x(Aρu) = 0
∂t(Aρu) + ∂x(A(ρu2 + p)) = −Cf wρu2/2 − Cρu
∂t(AE) + ∂x(Au(E + p)) = −wh(θ − θw)

∂t(Aq0ρz) + ∂x(Auq0ρz) = −q0ρzK(θ),

(8)

Extracting the cross-section term, A, and setting q := ρu and Z := q0ρz, we can
write this system as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + ∂xq = −A′
A q

∂tq + ∂x
(
q2
ρ

+ p
)

= −A′
A

(
q2
ρ

+ p
)

− Cf w
2A

q2
ρ

− C
Aq

∂tE + ∂x(u(E + p)) = −A′
A u(E + p) − wh

A (θ − θw)

∂tZ + ∂x
(
q
ρ
Z
)

= −A′
A

q
ρ
Z − 1

AZK(θ),

(9)

and finally, setting for short a := A′(x)/A(x),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂xq = −aq
∂tq + ∂x

[
q2
2ρ (3 − γ ) + (γ − 1)(E − Z)

]

= −a
[
q2
2ρ (3 − γ ) + (γ − 1)(E − Z)

]
− Cf w

2A
q2
ρ

− C
Aq

∂tE + ∂x
[
q
ρ

(
γE − (γ − 1) q

2

2ρ − (γ − 1)Z
)]

= −a
[
q
ρ

(
γE − (γ − 1) q

2

2ρ − (γ − 1)Z
)]

− wh
A (θ − θw)

∂tZ + ∂x
(
q
ρ
Z
)

= −a q
ρ
Z − 1

AZK(θ).

(10)

The temperature θ can be evaluated in terms of ρ, q,E and Z as

θ = c−1
v

(
E
ρ

− q2

2ρ2 − Z
ρ

)

, (11)

or simply as θ = c−1
v e. In fact, compare

p = ρRθ = (cp − cv)ρθ = (γ − 1)cvρθ , (12)

valid for an ideal gas, with

p = (γ − 1)ρe. (13)

Note that a variable cross-section acts on the system as a source term. Indeed, this is
what happens always when inhomogeneities affect the flux in conservation laws [9].
The source depends also on x, due to the area terms and the perimeter, w. Setting

U := (ρ, ρu,E, q0ρz)T ≡ (ρ, q,E,Z)T , (14)

this system can be conveniently rewritten in vector form as

∂tU + ∂x(F(U)) = S(U , x). (15)

Since the duct is located in 0 ≤ x ≤ L, the problem to solve is
{

∂tU + ∂x(F(U)) = S(U , x), (x, t) ∈ (0, L) × (0,T]
U(x, 0) = U0(x), x ∈ (0, L),

(16)

being U, U0(x), F(U), and S(U , x) four-dimensional vectors. Suitable initial and
boundary conditions have to be prescribed. Throughout the paper, we used the
following ones:
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Fig. 3 Schematic duct’s geometry, like that of Magneti Marelli

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ(x, 0) = 1.21Kg/m3; ρ(0, t) = 1Kg/m3;
u(x, 0) = 413.22m/s; u(0, t) = 600m/s;
θ(x, 0) = 295 oC; θ(0, t) = 800 oC;
p(x, 0) = 1.0247 × 105 Pa; p(0, t) = 2.2966 × 105 Pa;
z(x, 0) = 0; z(0, t) = 1.

(17)

Here, the variables x, t range over x ∈ [0, L] and t ∈ [0,T]. Prescribing ρ, u, θ , p, and
z, for t = 0 and at x = 0, as here above, yields the values at t = 0 and x = 0 of all
components of the vector U = U(x, t) defined in (14), recalling that
e = p/((γ − 1)ρ), while E can be obtained from either (7) or (11).
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Fig. 4 Catalyzers’ connecting points
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Fig. 5 Duct’s section with linear connections between any two components

There is no need to impose any boundary condition at x = L, since the flow is
outward, that is it can be shown that the characteristics point out of the domain.
Note that, from the last equations (concerning z), we assume that at the duct’s
entrance the amount of unburnt gas be maximum, i.e., that the motor is unable to
affect the gas’ emissions.
The pipe system proposed by Magneti Marelli had all devices connected by joints
whose profiles varied linearly with x, possibly discontinuously. The total fraction of
unburnt gas at the end edge, x = L, of the exhaust pipe, at time T = 1 s, was
z(L, 1) = 0.7006, i.e., about 70%. Below, we show some results obtained by changing
the forms of the connections between different sections of the system, as well as
changing the whole geometric profile of the system. Since the profiles vary very
smoothly and over short lengths, the flow remains subsonic and no effects due to
converging or diverging
nozzles is expected.
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Fig. 6 Precatalyzer with connections made by double parabolae (the next case with connections made by
cubic arcs looks very similar)
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Fig. 7 Precatalyzer connected by a single parabolic arc

Discussion and evaluation: Numerical results obtained varying the duct’s
geometry
Here are the numerical results obtained varying the duct’s geometry. The purpose of this
section is to explore through numerical simulations a variety of the duct’s geometrical
shapes, under which the noxious gases’ emissions at the end of the pipe could be reduced
as much as possible. In fact, while the main chemical action which transforms the noxious
gases into harmless products is due to the catalytic converters, the gas dynamics is also
affected by the geometry (shape and volume) of the duct through which the gas flows. In
particular, we first varied the duct’s profile without changing the device volume. All this
only concerns the catalyzer’s geometry, since the mufflers do not affect the reduction of
noxious gas.
A typical device, as that built by Magneti Marelli, consists of a precatalyzer, a catalyzer,

and two mufflers; see Fig. 3 for illustration.
Hereafter, we consider several possible connections, joining the various parts of the

exhaust pipe, trying to optimize the catalyzer’s performance, also taking into account
economical savings in terms of amount of material needed.
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Fig. 8 Precatalyzer connected by a single parabolic arc, but with opposite concavity, with respect to the case
of Fig. 7



Laurenzi and SpiglerMathematics-in-Industry Case Studies  (2018) 9:1 Page 10 of 20

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Fig. 9 Precatalyzer with a sinusoidal profile, connected by concave parabolic arcs

Starting from the typical Magneti Marelli’s device, where the various pieces are
schematically connected as in Fig. 3, we first modify the joints, choosing for them lin-
ear, parabolic or cubic arcs, double parabolic arcs, and sinusoidal profiles. Finally, we will
change completely the original shape of the catalyzer.
In Fig. 4 below, themain connecting points of a given configuration are shown. The radii

of the pipe, the precatalyzer, and the catalyzer, are r0 = 0.021m, r1 = 0.04m, r2 = 0.06m,
respectively.
To evaluate volumes, we used the formula for surfaces of revolution,

V = π

∫ b

a

[
f (x)

]2 dx.

When these integrals were more elaborated, we evaluated them by means of symbolic
manipulation, using Mathematica.
Below, we first describe several geometric configurations, and then summarize in a table

the most relevant quantity, that is the total fraction of unburnt gas at the end of the pipe,
at some reasonable time, z(L,T), obtained correspondingly.
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Fig. 10 Duct’s section where the catalyzers have a sinusoidal profile (a)
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Fig. 11 Duct’s section with sinusoidal catalyzers profile (b)

(a) Straight lines connections. If a1, a2 are the two points delimiting the precatalyzer’s
location, r0 the duct’s radius, and r1 that of the precatalyzer, considering joining them
with straight lines, the variable radius will be given by

r(x) = r1 − r0
a2 − a1

(x − a1) + r0.

The catalyzer has radius r2 > r1, see Figs. 4, 5.

(b) Two parabolic arcs. The various components of the duct are connected by two
parabolic arcs. The part between a1 and a2 with radius r0 and r1, respectively (Fig. 6) is
connected by two generic parabolae, f (x) = ax2 + bx + c and g(x) = αx2 + βx + γ , such
that f (a1) = r0, f ( a1+a2

2 ) = r0+r1
2 , f ′(a1) = 0, g(a2) = r1, g( a1+a2

2 ) = r0+r1
2 , g′(a2) = 0.

From these, the six coefficients above can be obtained, hence the radii:

f (x) = 2(r1 − r0)
(a1 − a2)2

x2 − 4a1
(r1 − r0)

(a1 − a2)2
x + r0 + 2a21

(r1 − r0)
(a1 − a2)2

,

g(x) = 2(r0 − r1)
(a1 − a2)2

x2 − 4a2
(r0 − r1)

(a1 − a2)2
x + r1 + 2a21

(r0 − r1)
(a1 − a2)2

.

Similarly for the other connecting points; see Fig. 6.
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Fig. 12 Duct with sinusoidal catalyzer profile (c)
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Fig. 13 Duct with sinusoidal catalyzers profile (d)

(c) Cubic arcs. The points a1 and a2 where the cross section’s radii are r0 and r1, respec-
tively, are connected with a cubic arc, f (x) = ax3 + bx2 + cx + d, such that f (a1) = r0,
f ′(a1) = 0, f (a2) = r1, f ′(a2) = 0. These four equations determine the four unknowns
a, b, c, d, hence

r(x) = 2
r0 − r1

(a2 − a1)3
x3 − 3

r0 − r1
(a2 − a1)3

(a1 + a2) x2

+
(

−6a22
r0 − r1

(a2 − a1)3
+ 6a2

r0 − r1
(a2 − a1)3

(a1 + a2)
)

x

+r1 + r0 − r1
(a2 − a1)3

(
4 a32 − 3 a22(a1 + a2)

)
.

The picture is very similar to the previous one, in Fig. 6.

(d) A single parabolic arc. Connecting parts by a single parabolic arc, loosing the dif-
ferentiability of the profile at one of the endpoints of the joint, if a1 and a2 are the points
corresponding to the radii r0 and r1, and imposing differentiability at a1, we claim that
f (x) = ax2+bx+c is such that f (a1) = r0, f ′(a1) = 0, f (a2) = r1. From this, the (variable)
radius between a1 and a2 will be

r(x) = − r0 − r1
(a1 − a2)2

x2 + 2a1
r0 − r1

(a1 − a2)2
+ r1 − r0 − r1

(a1 − a2)2
(
2a1a2 − a22

)
;

see Fig. 7.

Table 1 Comparing values of the total fraction of unburnt gas for the various configurations

Case V1 (inm3) V2 (inm3) z(L, 1)

(a) 0.000630 0.001571 0.7006

(b) ” ” 0.6918

(c) ” ” 0.6900

(d) 0.000596 0.001030 0.7097

(e) 0.000650 0.001230 0.6800

(f) ” ” 0.6670

(g) 0.000630 0.001571 0.6550

(h) 0.002300 0.004120 0.2510

(i) 0.003400 ” 0.4916

(l) ” ” ”
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Fig. 14 Case of profile in (a): Time evolution of the total fraction of unburnt gas, z(x, t), when linear joints
between the various components are used. Curves are numbered according to various times: the blue line is
the initial state, the black line the solution at the final time, T = 1. At the end of the duct, x = L, the value of
the fraction of unburnt gas, z(L, T), injected into the atmosphere can be read

(e) Considering instead a parabolic arc differentiable at a2 (rather than at a1), we obtain

r(x) = r0 − r1
(a1 − a2)2

x2 − 2a2
r0 − r1

(a1 − a2)2
x + r1 + a22

r0 − r1
(a1 − a2)2

;

see the Fig. 8.

(f) Sinusoidal profile with a single parabolic arc. We conjecture that a duct’s geomet-
ric profile not very smooth might induce microturbulences in the gas, inside the device.
Hence the idea to use a sinusoidal wavy profile for the catalyzers, to obtain a longer expo-
sition time of the noxious gases to the reacting substances, which are able to modify them,
producing gases harmless for the environment.
Connecting the various components by a single parabolic arc, with a precatalyzer’s

radius r1 between the abscissae a2 and a3, we have

r(x) = 0.001 cos
[

6π
a3 − a2

(x − a2)
]

+ r1 − 0.001,

see Fig. 9.
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Fig. 15 Case (h): Time evolution of unburnt gas using two cosinusoidal arcs. Solutions are numbered
according to time: the blue curve is the initial state, the black curve is the final one, at time T = 1; z(L, T) is
the fraction of unburnt gas injected into the atmosphere
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Fig. 16 Temperature in the duct at time T = 1 for case (h)

(g) “Full sinusoidal” profile. In view of the previously observed performances, one
might expect that a sinusoidal profile for the entire section of the system where the cat-
alyzers are placed would slow down the gas flow (i.e., reduce the gas speed), so that the
noxious gas would be exposed for a longer time to the action of the reactive substances.
We define the radius

r(x) = 0.002 cos
[
10π
a1

(
x − a1

10

)]

+ r0 + 0.002

on the initial part of the system, up to the catalyzer’s connection, i.e., between a0 and a1
(where the radius was earlier kept at the fixed value r0), and similarly between the two
catalyzers, i.e., between the abscissae a4 and a5 of Fig. 4. Now the various components
have also been connected by a sinusoidal profile; see Fig. 10.

(h) Increasing the volume of the device. The idea to choose a sinusoidal variation for
the catalyzers’ radii is suggested by the hope to design, in this way, a device where the
gases may flow, undergoing more effectively the chemical reactions. We do this changing
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1 2 3 4 5
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Fig. 17 Case (i): Time evolution of the fraction of unburnt gas using a cosinusoidal arc. Solutions are
numbered according to time: the blue curve is the initial state, the black one is the final one, at time T = 1;
z(L, T) is the fraction of unburnt gas injected into the atmosphere
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Fig. 18 Temperature at time T = 1 for case (i)

the connection points and increasing the catalyzers’ length. Thus, the volume will be
increased but the total fraction of unburnt gas will be shown to decrease at the same time.
Taking the connecting points at a1/2, (a4+a5)/2, and (a8+a9)/2, and using a cosinusoidal
profile for the catalyzers, taking the maximum values r1 and r2, we obtain the radius

r(x) = r1 − r0
2

cos
[

4π
a5 + a4 − a0 − a1

(x − (a5 + a4 + a0 + a1)/4)
]

+ r1 + r0
2

for the precatalyzer, and

r(x) = r2 − r0
2

cos
[

4π
a9 + a8 − a4 − a5

(x − (a9 + a8 + a4 + a5)/4)
]

+ r2 + r0
2

for the catalyzer; see Fig. 11.

(i) A single catalyzer with a sinusoidal profile. Considering the connecting points of
the catalyzer at a1/2 and (a4 + a5)/2, and as radius the average of the radii r1 and r0 of
the two catalyzers, we have

r(x) = r1 − r0
2

cos
[

4π
a5 + a4 − a0 − a1

(x − (a5 + a4 + a0 + a1)/4)
]

+ r1 + r0
2

;

see Fig. 12.
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Fig. 19 Section of a generic catalyzer



Laurenzi and SpiglerMathematics-in-Industry Case Studies  (2018) 9:1 Page 16 of 20

Table 2 Total fraction of unburnt gas, maximum temperature, and volume, obtained varying the
precatalyzer’s length, for a fixed radius r1 = 0.04m

Length (m) Unburnt Gas Temperature (oC) Volume (m3)

0.05 0.8506 921.0 0.00043

0.06 0.8346 929.1 0.00048

0.09 0.7883 951.8 0.00063

0.10 0.7736 959.0 0.00068

0.11 0.7591 966.0 0.00073

(l) Using two sinusoidal arcs. With two sinusoidal arcs (instead of a single one), dividing
the device in a precatalyzer and a catalyzer as in Fig. 13, we have

r(x) = r1 − r0
2

cos
[

4π
a5 + a4 − a0 − a1

(x − (a5 + a4 + a0 + a1)/4)
]

+ r1 + r0
2

.

We now examine the results obtained choosing all the previous geometric configura-
tions. In order to compare the performances achieved, we group in Table 1 the values of
the precatalyzer’s and catalyzer’s volumes, V1 and V2, as well as the total fraction of the
unburnt gas at the and of the pipe (at x = L), at time T = 1. In the first column the cases
(a) through (l) are identified.
To give an idea of the typical behavior of the total fraction of unburnt gas, z(x, t), along

the system, at various times, we plotted it in case (a) in Fig. 14. In all the other cases the
picture is very similar and hence it is worthless to show it.
Some observations. In case (d), z(L, 1) is a little higher than in cases (b) and (c), since

the volumes are a little smaller.
With concave parabolic arcs as in Fig. 8, instead, the device’s volume is bigger than in all

previous cases. Increasing the volume, the device performs better.
Note that the previous (though modest) improvements observed so far in Table 1, are

likely due just to the increased volumes. In case (f ), instead, we have an improvement
obtained keeping the same volume as in (e). We can thus identify a purely geometric
feature, capable of improving the efficiency of the catalytic device.
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Fig. 20 Total fraction of unburnt gas inside the duct, varying the precatalyzer’s length, with r2 = 0.04m fixed
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Fig. 21 Gas temperature inside the duct, varying the precatalyzer’s length, with r2 = 0.04m fixed

In case (g) we have the best result we could obtain leaving unchanged the main char-
acteristics originally imposed by Magneti Marelli. Clearly, a smaller volume implies also
some saving of (precious) material.
In case (h), results are astonishing (compare with the best, i.e., the smallest value

obtained before, see Fig. 15. Clearly, this is due to the increased volumes. The drawback
is the high(er) value of the temperature developed, see Fig. 16. In fact, the values provided
by Magneti Marelli were never higher than about 1000 oC.
In Figs. 17, 18, we show the analogous plots for case (i) we have. Note that the maximum

temperature is lower with respect to the previous case.
We now turn to the results that can be obtained varying radius and length. But, what

does actually affect the performance of a given catalyzer (besides the reacting material)?
In particular, which geometric factors do matter? This was the point. Below, we shall use
a single catalyzer, fix its radius, and vary its length, or conversely, see Fig. 19

• Varying the length. Consider a precatalyzer and let keep fixed its radius,
r1 = 0.04m, while varying its length, L. We obtained the values shown of Table 2.
Recall that by “unburnt gas” we mean z(L, 1), and by “temperature”, the maximum
value of temperature achieved inside the system. See also Figs. 20, 21.
Note that, as one could expect, the longer the device, the longer the exposition time
of the gas to the catalyzing substances, the smaller the total fraction of the unburnt
gas. The temperature however increases, due to the honeycomb structure and to the
chemical reactions occurring inside the precatalyzer. The same observations hold for

Table 3 Total fraction of unburnt gas, temperature, and volume, obtained varying the length for a
fixed radius r2 = 0.06m

Length (m) Unburnt Gas Temperature (oC) Volume (m3)

0.05 0.8946 896.7 0.00090

0.06 0.8833 902.5 0.00101

0.07 0.8721 908.1 0.00112

0.08 0.8611 913.6 0.00068

0.09 0.8502 919.0 0.00124
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Table 4 Total fraction of unburnt gas, maximum temperature, and volume, obtained varying radius,
for a fixed length L = 0.09m

Radius (m) Unburnt Gas Temperature (oC) Volume (m3)

0.021 0.6516 1023 0.00021

0.040 0.7883 951.8 0.00063

0.060 0.8502 919.0 0.00135

0.080 0.8842 900.9 0.00234

0.100 0.9056 889.4 0.00362

the catalyzer, fixing its radius at the value r2 = 0.06m, and varying its length. The
results are shown in Table 3.

• Varying the radius. Let keep now fixed, instead, the precatalyzer’s length,
L = 0.09m, and vary its radius. The results are qualitatively similar to those in
Figs. 20, 21, and are summarized in Table 4. Note that (as is well known) increasing
radius by a unity of a cylinder, its volume increases more significantly than increasing
its length by the same amount.
As for the catalyzer, we fix its length L = 0.07m and vary its radius as was done for
the precatalyzer. The most significant results are shown in the Table 5.

Conclusions
Comparing the previous Tables, 2 and 4, one can observe that bigger volumes do not lead
necessarily to better results. In fact, we found, e.g., that for r1 = 0.04m, L = 0.05m, and
volume (of the whole catalyzer)V = 0.00043m3, the total fraction of unburnt gas is about
equal to the third result in the third Table case above, Table 4, which corresponds to the
values r1 = 0.06m, L = 0.09m, and V = 0.00135m3.
From Bernoulli equation,

v2

2
+ γ

γ − 1
p
ρ

= const., (18)

follows that a different pressure and thus a different temperature will affect the two cat-
alyzers. In a catalyzer with a larger radius, the gas will exert a lower pressure with respect
to another with smaller radius. Consequently, being the two physical quantities linked by
the relation p = Rρθ , the temperature inside the first one will be lower than in the second
one. (The temperature does not remain constant, but grows as pressure grows.)
The chemical reaction inside the catalyzer is governed by Arrhenius’ law, K(θ) =

K0 exp(−E+/θ), hence, when the temperature is very low, the reaction becomes negligi-
ble, and the source term in the fourth equation of the system of balance laws (8) essentially
vanishes.

Table 5 Total fraction of unburnt gas, maximum temperature, and volume, obtained varying
catalyzer’s radius, for a fixed length L = 0.07m

Radius (m) Unburnt Gas Temperature (oC) Volume (m3)

0.021 0.6988 1000 0.00018

0.040 0.8188 936.8 0.00053

0.060 0.8721 908.1 0.00112

0.080 0.9011 892.3 0.00194

0.100 0.9191 882.4 0.00299
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Fig. 22 Comparing plots of the total fraction of unburnt gas inside the two ducts

When two catalyzers have different volumes but yield similar results, it happens pre-
cisely this: the catalyzer with a larger radius, in order to provide the same result as the
other (with a smaller radius), requires a higher exposition of the gas to the reacting
substances, hence to be longer.
Therefore, one should choose a catalyzer with small radius, but sufficient length as

to completely damp down the concentration of the noxious gas. However, such devices
would be characterized by high temperatures. For instance, the first catalyzer in Table 4,
has r1 = 0.021m (that is the radius of the pipe connecting the various parts). This was the
best result we obtained, but the average and maximum temperatures are higher in such
case.
Magneti Marelli provided temperature measurements at some points of the duct: for a

motor’s temperature equal to 800 oC, these were never higher than about 1000 oC, while
the maximum temperature attained by the device in question is about 1023 oC. All other
catalyzers we considered attain lower temperatures.We conclude that the device set up by
Magneti Marelli is indeed about the best. (Recall that for it, r1 = 0.04m and L = 0.09m.)
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Fig. 23 Comparing plots of the temperatures in the two ducts
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Similar considerations can be made for the catalyzer. The best result we obtained was
that with L = 0.07m and r2 = 0.04m (see Table 5). Using these two devices together, a
fraction of unburnt gas at the duct’s end about equal to 0.6859 was obtained, while for the
Magneti Marelli device we have 0.7075. In Fig. 22, these two cases are compared, and on
Fig. 23, the temperatures are compared.
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