
Mathematics-in-Industry
Case Studies

Chugunova et al. Mathematics-in-Industry Case Studies            (2019) 10:1 
https://doi.org/10.1186/s40929-019-0019-9

RESEARCH Open Access

Use of mathematical modeling to study
pressure regimes in normal and Fontan blood
flow circulations
Marina Chugunova1* , Matthew G. Doyle2, James P. Keener3 and Roman M. Taranets4

*Correspondence:
marina.chugunova@cgu.edu
1Institute of Mathematical Sciences,
Claremont Graduate University,
Dartmouth Ave., 1263, 91711
Claremont, California, USA
Full list of author information is
available at the end of the article

Abstract
We develop two mathematical lumped parameter models for blood pressure
distribution in the Fontan blood flow circulation: an ODE based spatially homogeneous
model and a PDE based spatially inhomogeneous model. Numerical simulations of the
ODE model with physiologically consistent input parameters and cardiac cycle
pressure-volume outputs, reveal the existence of a critical value for pulmonary
resistance above which the cardiac output dramatically decreases. We also analyze the
existence of solutions for two initial-boundary value problems for a non-linear
parabolic partial differential equation (PDE model) with switching in time dynamic
boundary conditions which model the blood pressure distribution in the
cardiovascular system with and without Fontan surgery. We obtain necessary
conditions for parameter values of the PDE model for existence and uniqueness of
physiologically relevant non-negative bounded periodic solutions. These results
suggest the use of our model for creation of synthetic data to overcome a lack of
training data that currently is considered to be one of the main challenges for the use
of machine learning for classification of healthy and failing Fontan patients.

Keywords: Mathematical modeling, Mathematical physiology, Lumped parameter
model, Fontan surgery, Dynamic flux boundary conditions, Heart pressure

AMS Subject Classification: Primary 34B08, 35K20, secondary 92C50

Introduction
With a normal biventricular heart, the systemic and pulmonary blood circulations are in
series and each one is supported by a ventricle, the left ventricle for the systemic circu-
lation and the right ventricle for the pulmonary circulation (Fig. 1-Left). A serious birth
defect affecting approximately 1 per 3000 births causes the systemic and pulmonary cir-
culations to be driven by a single ventricle. (Fig. 1-Middle). In this situation, oxygenated
blood returning from the lungs enters the ventricle and is mixed with deoxygenated blood
from the body, and then pumped into the systemic and pulmonary arteries in a partially
oxygenated state. This results in delivery of less oxygen than required to the body and less
than optimal oxygen exchange in the lungs.
The Fontan surgical procedure is applied to a malformed heart for which a biventricular

repair is not possible [19]. The Fontan procedure was first introduced in 1968 and involves
routing systemic venous blood flow directly to the pulmonary arteries, circumventing the
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Fig. 1 Diagram for the normal heart circulatory system (left), for a single ventricular heart birth defect
(middle), and for the Fontan circulatory system (right)

ventricular pumping chamber (Fig. 1-Right). In its modern form, the Fontan procedure
involves creating a surgical connection, called the total cavopulmonary connection, from
the superior vena cava (the vein carrying blood from the upper body to the heart) and
inferior vena cava (the vein carrying blood from the lower body to the heart) to the left
and right pulmonary arteries, using a synthetic graft called an extracardiac conduit. Thus,
the single ventricle propels blood flow through the systemic arteries and capillaries, with
the systemic venous return passively entering the pulmonary circulation. Consequently,
the Fontan circulation creates the unusual state in which the force driving the pulmonary
blood flow is the systemic venous pressure and is significantly less than for a biventricular
heart.
Fontan surgery is an extraordinary story of success in that it has allowed a generation

of newborn babies with the most severe forms of congenital heart disease to survive into
adulthood [16]. Though life-saving, a univentricular Fontan circulation does not, how-
ever, reproduce biventricular physiology and has been considered abnormal in the sense
that systemic venous hypertension (mean pressure > 10 mm Hg) occurs simultaneously
with pulmonary arterial hypotension (mean pressure < 15 mm Hg) [4]. In patients with
Fontan physiology, life expectancy remains far below projected age- and sex-matched nor-
mative values. Patients with Fontan procedures most frequently die from heart failure or
from thromboemboli [13]. The incidence of thromboembolic deaths rises sharply 15 years
after Fontan surgery [8, 26]. At the same time heart failure deaths are very uncommon
during the first 10 years after Fontan surgery, with a steady decline in survival thereafter.
Associated factors include protein-losing enteropathy, single right ventricle morphology,
and increased Fontan pressures [19].
Late Fontan failure might progress gradually over years with an absence of overt symp-

toms. Fontan patients have lived with less than ideal cardiac output their entire lives
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and might not recognize a decline in functional status until deterioration is signifi-
cantly advanced. In the medical literature, failure of the Fontan circulation is divided
into 3 main categories: ventricular dysfunction, systemic complications of Fontan phys-
iology, and chronic Fontan failure [12]. In a cross-sectional analysis of 546 children
with Fontan procedures, 27% had abnormal ventricular ejection fractions and 72%
had diastolic dysfunction. The prevalence of systolic and diastolic ventricular dys-
function continues to increase in adulthood [10, 22]. Over the past 5 − 10 years, a
number of studies have described the effect of Fontan physiology on the liver. Hep-
atic venous pressure after Fontan surgery might be 3 − 4 times higher than normal,
with levels commensurate with congestive heart failure in adults. Implications of this
elevated hepatic venous pressure over the long term remain to be fully understood
[2, 14]. Fontan physiology is characterized by progressively decreasing cardiac output
and increasing central venous pressure over time. The average peak oxygen consump-
tion ranges from 19 to 28 mL/kg per minute, or 50% − 60% of normal physiological
values [11, 21]. In the third decade of life, hospitalization rates and symptoms increase
significantly [6].
While the Fontan surgery has been life saving for these patients, much remains

unknown about Fontan failure and when failure is going to occur in a particular patient.
Mathematical modeling of the Fontan circulation can provide insight into Fontan failure
and ultimately could be used in a patient-specific basis to identify early failure in a given
patient and possibly suggest potential individualized treatment options. The objective of
the present study is to develop lumped parameter models of the Fontan circulation with
the goal of understanding the systematic changes that occur during Fontan failure. This
problem was originally posed at an Industrial Problem Solving Workshop at the Fields
Institute in 2016 by a cardiologist and an engineer at Toronto General Hospital with the
ultimate goal of mathematically identifying Fontan failure at an earlier time-point than
current clinical approaches.
The outline of this paper is as follows. First, we describes previous mathematical mod-

els of the Fontan circulation. Then we present a spatially homogenous ODE model of
the Fontan circulation including some basic results from this model, showing its con-
sistency with physiological behaviour. Next we describe spatially inhomogeneous PDE
models of the normal and Fontan circulations, which are an extension of the ODE
approach that allows for spatially inhomogeneous variation of the model parameters.
Then, we determine values of parameters for the PDE models such that a unique non-
negative solution exists. Lastly, we show how to construct super- and sub-solutions for the
PDE models.

Discussion andmathematical modeling results
Computational fluid dynamics

Computational fluid dynamics is a powerful tool that has been used to gain insight into
the local blood flow dynamics in the Fontan circulation. These simulations are used to
model the detailed 3-D hemodynamics of a particular region of the circulatory system,
such as the total cavopulmonary connection, rather than the complete circulation. A sim-
plified three-dimensional model was used [24] to simulate the local fluid dynamics for
different designs of the total cavopulmonary connection, allowing a quantitative evalua-
tion of the dissipated energy in each of the examined configurations. The authors show
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that, from a comparative point of view, the energetic losses can be greatly reduced if a
proper hydraulic design of the connection is adopted.
Under the assumptions that vessel walls are completely rigid (according to surgi-

cal reports, the vessel diameter change per cardiac cycle is around 5 − 10% in most
of the major arteries) and all vessels are radially symmetric, numerical simulations
of blood flow to the lungs after a surgical Fontan procedure are described in [7].
The authors simulated the full nonlinear Navier-Stokes equations using a streamline
finite element method. They analyzed the blood flow dynamics for different values
for the offset between the superior vena cava and the inferior vena cava anasto-
moses and concluded that the optimal distance for the offset is about 7 mm. It was
shown in [1] that wall flexibility can play an important role in determining quanti-
ties of hemodynamic interest in the Fontan connection. However, [23] recently showed
that while fluid-structure interaction effects are important for instantaneous quantities
of interest in the Fontan circulation, they have a negligible impact on time-averaged
values.
According to [5], the main quantities of importance in modeling the Fontan procedure

are:

• Vessel diameters and flow rates representative of the range seen in the patient group
under study including resting and exercise states

• Vessel sizes and flow rates matched appropriately
• Compliant vessels, accurate modeling of surgical anastomosis sites, and surgical

material used (unless proven unnecessary)
• Unsteady flow
• Effects of respiration
• Correctly shaped vessel anatomy

Two different types of boundary conditions, time-averaged and pulsatile, were ana-
lyzed in [27]. The authors derived a patient-specific sensitivity criterion which provides a
guideline for determining when time-averaged boundary conditions can be used to save
computational time.
Recent advances in imaging methods and patient-specific modeling now reveal increas-

ingly detailed information about blood flow patterns in healthy and diseased Fontan
states. Building on these tools, there is now an opportunity to couple blood flow sim-
ulation with optimization algorithms to improve the design of surgeries and devices,
incorporating more information about the flow physics in the design process to aug-
ment current medical knowledge. To do so, there is a need for efficient optimization
tools that are appropriate for unsteady fluid mechanics problems, particularly for the
optimization of complex patient-specific models in the presence of uncertainty. The
state of the art in optimization tools for virtual surgery, device design, and model
parameter identification in cardiovascular flow and mechanobiology applications are
reviewed in [28]. In this work, the authors perform optimization on a model Y-graft
design problem. This work represents the first use of formal design optimization
methods for the Fontan surgery, and also demonstrates the applicability of the opti-
mization framework on a pulsatile flow problem with multiple design parameters and
constraints.
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Lumped parameter models

While computational fluid dynamics models can be used to calculate detailed three-
dimensional blood flow in the total cavopulmonary connection, the computational costs
of this approach prevent it from being used to simulate the entire circulatory system.
Because Fontan failure is a systemic problem, reduced order methods, such as lumped
parameter models, can be used to study this phenomenon. Lumped parameter models are
based on the analogy between fluid flow and electric circuits. In addition to modelling the
entire circulatory system, these models can also be used to generate appropriate upstream
and downstream boundary conditions for computational fluid dynamics simulations.
The use of lumped parameter models to study the circulatory system was pioneered

by Guyton in [13]. A lumped parameter model of the Fontan circulation was used by
[25] to generate boundary conditions for a computational fluid dynamics model used to
design a Fontan assist device. In a study by [18], lumped parameter models of the Fontan
circulation and the normal circulation were compared to determine differences between
the two circulations in the regulations of cardiac output and central venous pressures. In
studies by [9, 15, 17], a lumped parameter model was used to study the Fontan circulation
under exercise conditions. In a study by [3], lumped parameter models were used with
clinical data to investigate differences in healthy and failing Fontan circulations; however
the type of Fontan circulation differed between the healthy and failing groups making it
difficult to draw conclusions from their study.

Spatially homogeneous ODEmodel of blood pressure distribution for the Fontan

circulation

A simple model of the Fontan circulation can be based on an electric circuit approach.
This model consists of five compartments: the heart, the arterial system, the capillary
system, the venous system, and the pulmonary system (lungs). For the Fontan circulation,
all compartments are connected in series around a single loop. In particular the flowmust
pass sequentially through the arteries, capillaries, veins and lungs, before returning to the
heart, as shown in Fig. 2.
We model the capillary and pulmonary systems as linear resistance vessels. That is, we

assume that the pressure drop across the vessel is proportional to the flow through the
vessel, with a constant of proportionality called the resistance, labeled Rc and Rp, for the

Fig. 2 Circuit diagram for the Fontan heart circulatory system (left) and piecewise heart compliance as a
function of time (right)
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capillary and pulmonary systems, respectively. We assume these vessels have no compli-
ance.Wemodel the arterial and venous systems as linear compliance vessels, in which the
volume of the vessel is proportional to the pressure in the vessel, with constant of propor-
tionality called the compliance. We allow for compliance vessels to have resistance, which
is modeled in the same way as for the resistance vessels. The compliances of the arterial
and venous systems are labeled Ca and Cv, respectively, while their resistances are Ra and
Rv. The heart is considered to be a linear compliance vessel with different compliances
depending on whether it is relaxed (in diastole) or contracted (in systole). As shown in
Fig. 2, the heart has compliance Cd in diastole (0 ≤ t < 0.7) and compliance Cs in sys-
tole (0.7 ≤ t < 1). We assume that all vessels contain some basal volume at zero pressure,
which are denoted as V 0

i .
The variables in the system are the volumesVa,Vv andVh of the compliance vessels (the

arterial system, the venous system and the heart), and the pressures PA, Pa, Pv and Ppv at
different points along the loop; see Fig. 2, where subscripts A, a, v, and pv represent the
aorta, arteries, veins, and pulmonary veins, respectively. The parameters of the system are
the resistances, compliances and basal volumes of all the vessels as well as the total blood
volumeVT . Estimates for all the parameters can be found bymeasurement on individuals.
For the results that follow, the values of the parameters that we use have been taken from
the literature and are given in Table 1. Parameter values: V in units of L, C in units of
L/mm Hg and R in units of mm Hg· min/L. It should be noted that Vs was chosen to be
negative to achieve a reasonable value of systolic heart compliance Cs. In practice, the
systolic pressure is never a small value or 0, so the volume in the heart never reaches the
negative value V 0

s = −0.5.
We consider the compliance of the heart to be a piecewise constant function, with value

Cs in systole and value Cd in diastole. To ensure appropriate directionality of the forcing,
we assume that there are “perfect” valves where the pulmonary vein enters the heart and
where the aorta leaves the heart. Anatomically, in Fontan circulation, the pulmonary vein
enters a common atrium which is separated from the single ventricle by an atrioventricu-
lar valve. Depending on whether the patient has a functioning right or left ventricle, this
valve is either the tricuspid valve or the mitral valve. Similarly, the single ventricle is sep-
arated from the aorta by a semilunar valve, which is either the pulmonary valve or the
aortic valve. For the purposes of these models, we are neglecting the common atrium by
considering it an extension of the pulmonary vein, and we refer to the valve separating the
pulmonary vein from the heart as the “pulmonary vein valve” and the valve separating the
heart from the aorta as the “aortic valve”. In our model, during diastole, the pulmonary
vein valve is open and the aortic valve is closed, allowing flow into the heart, and during
systole, the pulmonary vein valve is closed while the aortic valve is open allowing flow out
of the heart and into the arteries. We assume that the valves are perfect in the sense that

Table 1 Parameter values

V0a 1.0 Ca 0.00125

V0v 2.5 Cv 0.0625

V0d 0 Cd 0.01

V0s -0.5 Cs 0.005

Ra 0.5 Rc 17

Rp 2.9 VT 5.0
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they open and close instantaneously and in synchrony, and that they do not allow back
flow, regardless of pressure differences or flow characteristics. These assumptions lead to
a cardiac pressure-volume cycle as presented in Fig. 3.
We use conservation of volume in each compartment to set up the dynamic equations.

In particular, we must have the rate of change in volume of a compartment equal to the
difference of the flow in and flow out. Due to the assumptions on the valves, there are
discontinuities in the variables and their derivatives as the valves switch. Thus, it is con-
venient to distinguish the time intervals in which the heart is in systole and in which it
is in diastole. As such, there is one set of model equations that is valid in diastole, while
another set of equations is valid in systole.
The three flow rates are the arterial, capillary and pulmonary flow rates, defined as

Qa = PA − Pa
Ra

, Qc = Pa − Pv
Rc

, Qp = Pv − Ppv
Rp

. (1)

The three compliance volumes are the arterial, venous and heart volumes, defined as

Va = V 0
a + CaPa, Vv = V 0

v + CvPv, Vh = V 0
h + ChPh, (2)

with

Vh =
{
V 0
d + CdPpv during diastole
V 0
s + CsPA during systole

. (3)

Consequently, the dynamic equations are, during inflow (diastole),⎧⎪⎨
⎪⎩
Ca

dPa
dt = Qa − Qc,

Cv
dPv
dt = Qc − Qp,

Cd
dPpv
dt = Qp,

(4)

so that Qa = 0 and PA = Pa, and during outflow (systole)⎧⎪⎨
⎪⎩
Ca

dPa
dt = Qa − Qc,

Cv
dPv
dt = Qc − Qp,

Cs
PA
dt = −Qa,

(5)

so that Qp = 0 and Pv = Ppv. In addition, total volume must always be conserved, so that

VT = Va + Vv + Vh. (6)

Fig. 3 The cardiac pressure-volume cycle from our model (left) and effect of pulmonary resistance on cardiac
output(right)
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It is possible to simplify these equations by using the conservation law (6). In particular,
during inflow (diastole),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ca
dPa
dt = −Pa−Pv

Rc ,
Cv

dPv
dt = Pa−Pv

Rc − Pv−Ppv
Rp ,

Ppv = 1
Cd

(
VT − V 0

a − CaPa − V 0
v − CvPv − V 0

d
)
,

PA = Pa,

(7)

and during outflow (systole)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ca

dPa
dt = PA−Pa

Ra − Pa−Pv
Rc ,

Cv
dPv
dt = Pa−Pv

Rc ,
PA = 1

Cs

(
VT − V 0

a − CaPa − V 0
v − CvPv − V 0

s
)
,

Ppv = Pv.

(8)

We can then define coefficients:

a1 = 1
CaRc

, b1 = 1
Cv

[
1
Rc

− Ca
CdRp

]
, c1 = 1

Cv

[
1
Rc

+ 1
Rp

+ Cv
CdRp

]
,

a2 = 1
CvRc

, b2 = 1
Ca

[
1
Rc

+ 1
Ra

+ Ca
CsRa

]
, c2 = 1

Ca

[
1
Rc

− Cv
CsRa

]
,

d1 = 1
CvCdRp

[
VT − V 0

a − V 0
v − V 0

d
]
, d2 = 1

CaCsRa

[
VT − V 0

a − V 0
v − V 0

s
]
,

two matrices:

Ad =
(

−a1 a1
b1 −c1

)
, As =

(
−b2 c2
a2 −a2

)
,

and three vectors:

bd =
(

0
d2

)
, bs =

(
d1
0

)
, and P =

(
Pa
Pv

)
.

In terms of new notation, during diastole the ODE system is dP
dt = Ad P+bd and during

systole it is dP
dt = As P + bs.

We first show that the equilibrium points for both ODE systems are stable nodes. The
determinant of the matrix Ad is

�(Ad) = a1(c1 − b1) = Ca + Cv + Cd
CaCdCvRcRp

> 0

and the determinant of the matrix As:

�(As) = a2(b2 − c2) = Ca + Cv + Cs
CaCsCvRcRa

> 0.

The trace of the matrix Ad is

τ(Ad) = −(a1 + c1) = −Ca + Cv
CaCvRc

− Cd + Cv
CvCdRp

< 0,

and the trace of the matrix As is

τ(As) = −(a2 + b2) = −Ca + Cv
CaCvRc

− Ca + Cs
CaCsRa

< 0.

Taking into account that τ 2(Ad) > 4�(Ad) and τ 2(As) > 4�(As), it follows that both
matrices Ad and As have negative real eigenvalues, which implies the equilibrium points
are stable nodes.
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We denote the equilibrium point for the diastole system as P∗
d = −A−1

d bd and for the
systole system as P∗

s = −A−1
s bs.

The time period for the diastole system is taken in our computations as t1 = 0.7 and for
the systole system as t2 = 0.3. Starting the dynamics at the initial point P(t = 0) = P0 the
value of the solution at the end of the diastole period is

P1 ≡ P(t1) = exp(t1Ad)
(
P0 − P∗

d
)+ P∗

d,

and at the end of the systole period is

P2 ≡ P(t1 + t2) = exp(t2As)
(
P(t1) − P∗

s
)+ P∗

s .

After one full period T = t1 + t2 the solution is given by the mapping P0 → P2 given by

P2 = exp(t2As)
(
exp(t1Ad)

(
P1 − P∗

d
)+ P∗

d − P∗
s
)+ P∗

s

which has a unique stable fixed point provided that the spectral radius of M =
exp (t2As) exp (t1Ad) is less than one. This holds true because thematricesAs andAd both
have negative real eigenvalues. Existence of the stable fixed point implies the existence of
a limiting periodic orbit for our switching from systole to diastole ODE system.
To find the coordinates where the limiting periodic orbit switches from one trajectory

to the other and back we solve the system of the equations{
P2 = exp(t2As)

(
exp(t1Ad)

(
P1 − P∗

d
)+ P∗

d − P∗
s
)+ P∗

s
P1 = exp(t1Ad)

(
exp(t2As)

(
P2 − P∗

s
)+ P∗

s − P∗
d
)+ P∗

d
. (9)

Denote the two matrices

M1 = (I − exp(t2As) exp(t1Ad))
−1 and M2 = (I − exp(t1Ad) exp(t2As))

−1,

and the two vectors

v1 = − exp(t2As) exp(t1Ad)P∗
d + exp(t2As)P∗

d − exp(t2As)P∗
s + P∗

s ,

and

v2 = − exp(t1Ad) exp(t2As)P∗
s + exp(t1Ad)P∗

s − exp(t1Ad)P∗
d + P∗

d,

then the limiting cardiac cycle is defined by P1 = M1 v1 and P2 = M2 v2.
In addition to diastole and systole, the cardiac cycle consists of two isovolumetric

phases, during which both heart valves are closed, and the heart undergoes a change in
pressure in response to a change in its shape, while maintaining a constant blood vol-
ume. Isovolumetric contraction occurs following diastole, during which the heart muscle
contracts, increasing the pressure until the aortic valve opens to start systole. Isovolumet-
ric relaxation occurs following systole, during which the heart muscle relaxes, decreasing
the pressure until the pulmonary vein valve opens. In our model, which instantaneously
switches from diastole to systole, the heart pressure Ph is determined in a way that is
consistent with the isovolumetric constraint. In particular, during systole,{

Vh = VT − (
V 0
a + V 0

v + CaPa + CvPv
)
,

Ph = (
Vh − V 0

s
)
/Cs,

(10)

and during diastole,{
Vh = VT − (

V 0
a + V 0

v + CaPa + CvPv
)
,

Ph = (
Vh − V 0

d
)
/Cd.

(11)
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Consequently, while Pa and Pv are continuous functions of time, Ph experiences jump
discontinuities at the transitions between diastole and systole.
Simulations can be done by sequentially integrating the systolic and diastolic equations,

and repeating. With model parameter values taken from the table, the simulations of the
model equations exhibited realistic values. As shown in Fig. 4, the stroke volume (the
amount of blood pumped out of the heart in one heartbeat) was found to be approximately
70 mL, which is consistent with typical values. The aortic pressure Pa varied between
approximately 70 mmHg (diastolic) and 120 mmHg (systolic) within a typical period of 1
second, as shown in Fig. 4. These values are within the physiological range and the trend
is consistent with physiological expectations. The pulmonary venous pressure Ppv, which
is a surrogate for the atrial pressure, varies between approximately 2.5 mm Hg and 22.1
mm Hg. These values are also within the physiological range. The trends are reasonably
consistent with expectations given our model assumptions.
Pulmonary vascular resistance Rp is known to increase in Fontan failure and an increase

in this resistance is known to lead to a decrease in cardiac output. This model can be used
to demonstrate the impact of pulmonary vascular resistance on cardiac output. Figure 3
shows the change in average cardiac output as a function of pulmonary vascular resis-
tance for two different heart rates. As expected, the average cardiac output decreases with
increasing resistance. What is interesting is that there is a change in slope of the curves
at an inflection point corresponding to Rp ≈ 3.60 mm Hg/min/L for a heart rate of 60
beats/min and Rp ≈ 3.65 mm Hg/min/L for a heart rate of 120 beats/min. After this
inflection point, the cardiac output decreases more quickly for a given change in resis-
tance than before this inflection point, suggesting that something changes at this point
with regards to Fontan failure and this change is dependent on heart rate. The exact
mechanism behind this inflection point is unknown at this time and further research is
required to determine its cause.
Pulmonary resistance also has an impact on the cardiac pressure-volume curve. As

shown in the left panel of Fig. 5, the cardiac pressure-volume curve shifts to the left (i.e.
decreased cardiac volumes) for the case of high pulmonary resistance. What this means
is that the basal volume of blood in the heart has decreased as a result of this increase
in resistance. For the present case, the basal volume of the heart has decreased to almost
zero, implying that a further increase in resistance would result in an insufficient amount

Fig. 4 Heart volume (left) and heart pressure (right) as a function of time under normal Fontan conditions
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Fig. 5 The cardiac pressure-volume cycle from high pulmonary resistance (left) and high heart rate (right)

of blood returning to the heart, which consequently would reduce the cardiac output.
Conversely, we see the opposite effect in the right panel Fig. 5, which shows the cardiac
pressure-volume curve shifted to the right (i.e. increased cardiac volumes) for the case of
high heart rate. By increasing the heart rate for a fixed stroke volume, the cardiac output
would increase, resulting in an increase in the amount of blood being pumped to the body
and returning to the heart.
Figure 6 shows an estimate of the pressure drop as a function of distance from the heart

for healthy and failing Fontan patients based on clinically measured pressure catheter
data and approximate distances from the heart for the pressure measurement locations.
This figure illustrates that the majority of the pressure drop occurs near the heart in
the systemic arteries and that furthest away from the heart, in the total cavopulmonary
connection and the pulmonary circulation, the pressures are low and nearly constant.

Spatially inhomogeneous PDEmodels of blood pressure distribution

In this section, our approach tomodelling blood flow in the Fontan circulation is extended
to a PDE model for both the biventricular circulation and the Fontan circulation. The
PDE model has the advantage of allowing for spatial variation of model parameters such
as compliance and resistance and allowing all vessels to have both compliance and resis-
tance. This can potentially allow for more personalization of the model to an individual
patient, which should improve the accuracy and predictive capabilities of the model. Fur-
thermore, with piecewise constant values of themodel parameters, the PDEmodel should

Fig. 6 Blood pressure values (systolic (red), diastolic (green), mean (blue)) for a healthy Fontan patient as a
function of distance from the heart
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show a similar behavior to the ODE model, giving us assurances as to the fidelity of the
PDE approach.
To model the circulatory system as a continuous flow network in a resistive compliance

vessel, we assume that blood flow is a Stokes flow, i.e. the Reynolds number is sufficiently
small to allow us to neglect inertial effects. Consequently, the flux in a cylindrical tube is
a Poiseuille flow for which

Q = − A2

8πμ

∂P
∂x

, (12)

where P is the local pressure, A is the cross-sectional area, and μ is the fluid viscosity.
Now we assume that a vessel is a linear compliance vessel with A = A0 + C P, where C is
the compliance. This leads to a flux relationship for a single vessel

Q = − (A0 + C P)2

8πμ

∂P
∂x

. (13)

If we have a total number of N parallel vessels all with cross-section area A, the flux is

Q = −N (A0 + C P)2

8πμ

∂P
∂x

≡ −q(x,P)
∂P
∂x

. (14)

Notice that in the limit C → 0, this reduces to Ohm’s Law (as it must)

Q = − 1
R

∂P
∂x , (15)

where R = 8πμ

N A2
0
is the resistance per unit length. When combined with the conservation

law (the total volume of circulating blood is conserved)
∂A
∂t

+ ∂Q
∂x

= 0, (16)

this yields

C
∂P
∂t

= ∂

∂x
(
q(x,P) ∂P

∂x
)
, (17)

which is a nonlinear parabolic partial differential equation for P(x, t) with spatially vari-
able coefficients. In general C = C(x) ≥ 0, A0 = A0(x) ≥ inf(A0) > 0, and N = N(x) ≥
1.

Boundary conditions for normal circulation

For the normal circulation (see Fig. 7), there are two ventricles, the left and the right
ventricles, each of which satisfy a volume-compliance relationship of the form

V = V0 + C P. (18)

Fig. 7 Circuit diagram for the normal circulation
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The basal volumes and compliances are different during systole and diastole, that is

Vlh(t) =
{
V 0
ld + Cld Ppv

(
L−
l , t
)
, during diastole

V 0
ls + Cls PA

(
0+, t

)
, during systole

, (19)

Vrh(t) =
{
V 0
rd + Crd PV

(
L−
r , t
)
, during diastole

V 0
rs + Crs Ppa

(
L+
r , t
)
, during systole

. (20)

Note that in Eqs. (19) and (20), the subscripts l and r refer to the left and right ventricles,
the subscripts d and s refer to diastole and systole. In this two ventricle model, the 7
pressures are systemic venous pressure Pv, vena cava pressure PV , pulmonary arterial
pressure Ppa, pulmonary pressure Pp, pulmonary venous pressure Ppv, aortic pressure PA,
and systemic arterial pressure Pa.
During systole the input valves (mitral and tricuspid) are closed and output valves (pul-

monary and aortic) are open, while during diastole the opposite is the case. For the normal
circulation, we let 0 < x < Lr be the systemic circulation, and Lr < x < Ll be the
pulmonary circulation, and of course the domain 0 < x < Ll is periodic.
For convenience, we use the following notation, during systole: systemic pressure is

P1s := PA, pulmonary pressure is P1p := Ppa and during diastole: systemic pressure is
P2s := Ppv, pulmonary pressure is P2p := PV . Systemic and pulmonary pressures are every-
where continuous functions except two points x = 0 and x = Lr where discontinuity
jumps correspond to the left and right ventricle pressure jumps during the switch between
systole and diastole phases.

Initial-boundary value problem (systolic regime: 0 < t < t1)

Assume that at the initial time t = 0 the pressure is P(x, 0) = P0(x). Systemic circulation
model P1s is given by the partial differential equation:

C(x)
∂P
∂t

= ∂

∂x

(
q(x,P)

∂P
∂x

)
(21)

and conditions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Problem P1s : 0 < t < t1, 0 < x < Lr ,
Initial data : P1s 0(x) = P0(x),
Boundary conditions for P1s : B1

s (t) := P1s (0, t),
Dynamic Flux BC at x = 0 : Cls

dB1s
dt = q

(
0,B1

s
) ∂P1s

∂x (0, t),
Neumann BC at x = Lr : P1s x(Lr , t) = 0.

(22)

Pulmonary circulation model P1p is given by the partial differential equation (21) and
conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Problem P1p : 0 < t < t1, Lr < x < Ll,
Initial data : P1p 0(x) = P0(x),
Boundary conditions for P1p : B1

p(t) := P1p(Lr , t),

Dynamic Flux BC at x = Lr : Crs
dB1p
dt = q

(
Lr ,B1

p

)
∂P1p
∂x (Lr , t),

Neumann BC at x = Ll : P1p x(Ll, t) = 0.

(23)

These boundary conditions are defined in such a way as to ensure conservation of the
total volume

VT = Vlh(t) + Vrh(t) +
∫ Ll

0
A(x, t) dx
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during systole. Indeed, from (16), (19), (20) and the dynamic flux boundary conditions it
follows directly that d

dtVT = 0.

Initial-boundary value problem (switch from systole to diastole at: t = t1)

Initial data for the systemic circulation model P2s (and for B2
s (t) := P2s (Lr , t)) at the

beginning of diastole (conservation of volume, initial data, and interpolation):⎧⎪⎨
⎪⎩
V 0
ls + Cls B1

s (t1) = V 0
ld + Cld B2

s (t1),
P2s (x, t1) = P1s (x, t1), for x ∈ (0, Lr − ε),
P2s (Lr , t1) = B2

s (t1), and P2s (x, t1) is smooth for x ∈ (Lr − ε, Lr).
(24)

Initial data for the pulmonary circulation model P2p (and for B2
p(t) := P2p(Ll, t)) at the

beginning of diastole (conservation of volume, initial data, and interpolation):⎧⎪⎨
⎪⎩
V 0
rs + Crs B1

p(t1) = V 0
rd + Crd B2

p(t1),
P2p(x, t1) = P1p(x, t1), for x ∈ (Lr , Ll − ε),
P2p(Ll, t1) = B2

p(t1), and P2p(x, t1) is smooth for x ∈ (Lr , Ll − ε).
(25)

Initial-boundary value problem (diastolic regime: t1 < t < t2)

Systemic circulation model P2s is given by the partial differential Eq. (21) and conditions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Problem P2s : t1 < t < t2, 0 < x < Lr ,
Initial data : P2s (x, t1),
Boundary conditions for P2s : B2

s (t) := P2s (Lr , t),
Neumann BC at x = 0 : P2s x(0, t) = 0,
Dynamic Flux BC at x = Lr : Cld

dB2s
dt = q

(
Lr ,B2

s
) ∂P2s

∂x (Lr , t).

(26)

Pulmonary circulation model P2p is given by the partial differential Eq. (21) and
conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Problem P2p : t1 < t < t2, Lr < x < Ll,
Initial data : P1p(x, t1),
Boundary conditions for P2p : B2

p(t) := P2p(Ll, t),
Neumann BC at x = Lr : P2p x(Lr , t) = 0,

Dynamic Flux BC at x = Ll : Crd
dB2p
dt = q

(
Ll,B2

p

)
∂P2p
∂x (Ll, t).

(27)

Again, it follows directly from (16), (19), (20) and the dynamic flux boundary conditions
that during diastole d

dt VT = 0.

Initial-boundary value problem (switch from diastole to systole regime: t = t2)

Initial data for the systemic circulation model P1s (and for B1
s (t) := P1s (0, t)) at the

beginning of systole (conservation of volume, initial data, and interpolation):⎧⎪⎨
⎪⎩
V 0
ls + Cls B1

s (t2) = V 0
ld + Cld B2

s (t2),
P1s (x, t2) = P2s (x, t2), for x ∈ (ε, Lr),
P1s (0, t2) = B1

s (t2), and P1s (x, t2) is smooth for x ∈ (0, ε).
(28)

Initial data for the pulmonary circulation model P1p (and for B1
p(t) := P1p(Lr , t)) at the

beginning of systole (conservation of volume, initial data, and interpolation):⎧⎪⎨
⎪⎩
V 0
rs + Crs B1

p(t2) = V 0
rd + Crd B2

p(t2),
P1p(x, t2) = P2p(x, t2), for x ∈ (Lr + ε, Ll),
P1p(Lr , t2) = B1

p(t2), and P1p(x, t2) is smooth for x ∈ (Lr , Lr + ε).
(29)

The problem is periodic in time (i.e systolic and diastolic regimes are repeated).
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Boundary conditions for Fontan circulation

The Fontan blood flow circulation has only one ventricle, so the model has only a single
loop 0 < x < Ll. The basal volumes and compliances of the one ventricle heart are also
different during systole and diastole, that is

Vh =
{
V 0
d + Cd Ppv, during diastole

V 0
s + Cs PA, during systole

. (30)

For convenience we use the following notation, during systole: blood pressure is P1 :=
PA and during diastole blood pressure is P2 := Ppv.

Initial-boundary value problem (systolic regime: 0 < t < t1)

Assume that at the initial time t = 0 the pressure is P(x, 0) = P0(x).
One heart circulation model P1 is given by the partial differential Eq. (21) and

conditions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Problem P1 : 0 < t < t1, 0 < x < Ll,
Initial data : P10(x) = P0(x),
Boundary conditions for P1 : B1(t) := P1(0, t),
Dynamic Flux BC at x = 0 : Cls

dB1
dt = q

(
0,B1) ∂P1

∂x (0, t),
Neumann BC at x = Ll : P1x(Ll, t) = 0.

(31)

Initial-boundary value problem (switch from systole to diastole at: t = t1)

Initial data for the systemic circulation model P2 (and for B2(t) := P2(Ll, t)) at the
beginning of diastole (conservation of volume, initial data, and interpolation):

⎧⎪⎨
⎪⎩
V 0
s + Cs B1(t1) = V 0

d + Cd B2(t1),
P2(x, t1) = P1(x, t1), for x ∈ (0, Ll − ε),
P2(Ll, t1) = B2(t1), and P2(x, t1) is smooth for x ∈ (Ll − ε, Ll).

(32)

Initial-boundary value problem (diastolic regime: t1 < t < t2)

Systemic circulation model P2 is given by the partial differential Eq. (21) and conditions:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Problem P2 : t1 < t < t2, 0 < x < Ll,
Initial data : P1(x, t1),
Boundary conditions for P2 : B2(t) := P2(Ll, t),
Neumann BC at x = 0 : P2x(0, t) = 0,
Dynamic Flux BC at x = Ll : Cld

dB2
dt = q

(
Ll,B2) ∂P2

∂x (Ll, t).

(33)

Initial-boundary value problem (switch from diastole to systole regime: t = t2)

Initial data for the systemic circulation model P1 (and for B1(t) := P1(0, t)) at the
beginning of systole (conservation of volume, initial data, and interpolation):

⎧⎪⎨
⎪⎩
V 0
s + Cs B1(t2) = V 0

d + Cd B2(t2),
P1(x, t2) = P2(x, t2), for x ∈ (ε, Lr),
P1(0, t2) = B1(t2), and P1(x, t2) is smooth for x ∈ (0, ε).

(34)

The problem is periodic in time (i.e systolic and diastolic regimes are repeated). It is a
direct computation to verify that with these boundary conditions d

dtVT = 0.
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Well-posedness analysis of spatially inhomogeneous PDEmodel

Existence and uniqueness of the nonnegative solution in normal circulation

In this section we find restrictions on the parameters of the PDEmodel with dynamic flux
boundary conditions for the case of the normal blood circulation for which a nonnegative
solution exists and is unique. First, we show that the pressure P(x, t) stays bounded for any
time t, then we obtain uniform in time bounds for the time derivative and for the gradient
of P(x, t) for some range of parameter values. Second, we employ Grönwall lemma to
prove uniqueness.
We start by introducing the following notation

Qt2
t1 = �r × (t1, t2), Qt2 = �r × (0, t2), �r := (0, Lr), �ε

r := (Lr − ε, Lr).

Consider the equation

C(x)Pt = (q(x,P)Px)x (35)

with initial and boundary conditions

P1(x, 0) = P0(x) ≥ 0, (36)

ClsP1,t = q(x, P1)P1,x atx = 0, P1,x = 0 atx = Lr (37)

for all t ∈ (0, t1) (during systole);

P2(x, t1) =
{
P1(x, t1) ∀ x ∈[ 0, Lr − ε] ,
f (x, t1) ∀ x ∈ (Lr − ε, Lr] ,

(38)

where f (x, t1) is such that

∫
�ε
r

C(x)f (x, t1)dx − Cldf (Lr , t1) =
∫
�ε
r

C(x)P1(x, t1)dx + ClsP1(0, t1), (39)

P2,x = 0 atx = 0, CldP2,t = q(x,P2)P2,x at x = Lr (40)

for all t ∈ (t1, t2) (during diastole);

P1(x, t2) =
{

f̃ (x, t2) ∀ x ∈[ 0, ε] ,
P2(x, t2) ∀ x ∈ (ε, Lr] ,

(41)

where f̃ (x, t2) is such that
ε∫

0

C(x)f̃ (x, t2)dx + Clsf̃ (0, t2) =
ε∫

0

C(x)P2(x, t2)dx − CldP2(Lr , t2). (42)

Let

P(x, t) =
{
P1(x, t) ∀ t ∈ (0, t1)
P2(x, t) ∀ t ∈[ t1, t2) (43)

be a solution to problem (35)–(40) for all t ∈ (0, t2) such that

P(x, t) = P(x, t + t2). (44)

First, we define a weak solution for our problem.
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Definition 1 A non-negative function P(x, t) is said to be a periodic solution of the
problem (35)–(40), i. e. P(x, t) = P(x, t + t2), if

P ∈ C
1
2 ,

1
4

x,t
(
Q̄t2

) ∩ L∞ (
0, t2;H1(�r)

)
, C

1
2 (x)Pt ∈ L2

(
Qt2

)
,

q(x,P)Px ∈ L2
(
0, t2;H1(�r)

)
,

and P(x, t) satisfies equation (35) in the sense that∫∫
Qt2

C(x)Ptφ dxdt −
∫∫
Qt2

(q(x,P)Px)xφ dxdt = 0

for any φ ∈ L2(Qt2) and φ(x, 0) = φ(x, t2).

Here, Cα,β
x,t
(
D̄
)
is the space of Holder continuous in the closure of the domain D func-

tions with the Holder exponents given by: α for x and β for t; Lp space is the Lebesgue
space (absolute values of functions to the power p are Lebesgue integrable); H1 is the
Sobolev space (functions and their gradients are Lebesgue integrable).
Our main result establishes parameter ranges for which non-negative solutions exist, as

follows.

Theorem 1 If

C(x) ∈ C
(
�̄r
)
: infC(x) > 0, ‖C(x)‖1 < Cld; Cls � 0, Cld > 0;

infN(x) > 0, infA0(x) > 0, f (x, t1) ∈ C0(�̄ε
r ),

initial data P0(x) ∈ H1(�r) are non-negative, and∫
�r

q(x,P0)P20,xdx � 1
64πμ2|�r|

(Cld − ‖C(x)‖1)
C2
ld

inf
�r

∣∣∣N(x)A4
0(x)

C2(x)

∣∣∣ ,

M :=
∫
�r

C(x)P0(x)dx + ClsP0(0) > 0,

then the problem (35)–(40) has a unique non-negative solution in the sense of the
Definition 1.

Here, C0 is the space of continuous functions and ‖.‖p is the norm in the Lebesgue
space Lp.
We proceed by presenting well-posedness conditions for the second part of the interval,

namely (Lr , Ll) where, to compare to the first part (0, Lr), Neumann amd dynamic flux
boundary conditions are switched. Consider the following problem

C(x)Pt = (q(x,P)Px)x (45)

with initial and boundary conditions

P1(x, 0) = P0(x) � 0, (46)

CrsP1,t = q(x,P1)P1,x atx = Lr , P1,x = 0 atx = Ll (47)

for all t ∈ (0, t1);

P2(x, t1) =
{
P1(x, t1) ∀ x ∈[ Lr , Ll − ε] ,
g(x, t1) ∀ x ∈ (Ll − ε, Ll] ,

(48)
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where g(x, t1) such that∫
�ε
l

C(x)g(x, t1)dx − Crdg(Ll, t1) =
∫
�ε
l

C(x)P1(x, t1)dx + CrsP1(0, t1), (49)

P2,x = 0 at x = Lr , CrdP2,t = q(x,P2)P2,x at x = Ll (50)

for all t ∈ (t1, t2);

P1(x, t2) =
{

g̃(x, t2) ∀ x ∈[ Lr , Lr + ε] ,
P2(x, t2) ∀ x ∈ (Lr + ε, Ll] ,

(51)

where g̃(x, t2) such that
Lr+ε∫
Lr

C(x)g̃(x, t2)dx + Crsg̃(Lr , t2) =
Lr+ε∫
Lr

C(x)P2(x, t2)dx − CrdP2(Ll, t2). (52)

Let

P(x, t) =
{
P1(x, t) ∀ t ∈ (0, t1),
P2(x, t) ∀ t ∈[ t1, t2), (53)

be a solution to problem (45)–(50) for all t ∈ (0, t2) such that

P(x, t) = P(x, t + t2). (54)

Introduce the following notation

Qt2
t1 = �l × (t1, t2), Qt2 = �l × (0, t2), �l := (Lr , Ll), �ε

l := (Ll − ε, Ll).

Definition 2 A non-negative function P(x, t) is said to be a periodic solution of the
problem (45)–(50), i. e. P(x, t) = P(x, t + t2), if

P ∈ C
1
2 ,

1
4

x,t
(
Q̄t2

) ∩ L∞ (
0, t2;H1(�l)

)
, C

1
2 (x)Pt ∈ L2

(
Qt2

)
,

q(x,P)Px ∈ L2
(
0, t2;H1(�l)

)
,

and P(x, t) satisfies equation (45) in the sense that∫∫
Qt2

C(x)Ptφ dxdt −
∫∫
Qt2

(q(x,P)Px)x φ dxdt = 0

for any φ ∈ L2(Qt2) and φ(x, 0) = φ(x, t2).

Theorem 2 Assume that

C(x) ∈ C
(
�̄l
)
: infC(x) > 0, ‖C(x)‖1 < Crd; Crs � 0, Crd > 0;

infN(x) > 0, infA0(x) > 0, g(x, t1) ∈ C0 (�̄ε
l
)
,

and initial data P0(x) ∈ H1(�l) is non-negative satisfying∫
�l

q(x,P0)P20,xdx � 1
64πμ2|�l|

(Crd − ‖C(x)‖1)
C2
rd

inf
�l

∣∣∣N(x)A4
0(x)

C2(x)

∣∣∣ ,

M :=
∫
�l

C(x)P0(x)dx + CrsP0(0) > 0,

then the problem (45)–(50) admits a unique non-negative solution in the sense of
Definition 2.
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The proof of Theorem 2 is similar to that of Theorem 1. Finally, to get well-posedness
for the whole interval (0, Ll), the restrictions on the parameter values obtained in
Theorem 1 should be combined with the restrictions obtained in Theorem 2.

Existence and uniqueness of the nonnegative solution in Fontan case

Let us introduce the following notation

Qt2
t1 = �L × (t1, t2), Qt2 = �L × (0, t2), �L := (0, Ll), �ε

L := (Ll − ε, Ll).

Consider the following equation

C(x)Pt = (q(x,P)Px)x (55)

with initial and boundary conditions

P1(x, 0) = P0(x) � 0, (56)

ClsP1,t = q(x,P1)P1,x atx = 0, P1,x = 0 atx = Ll (57)

for all t ∈ (0, t1);

P2(x, t1) =
{
P1(x, t1) ∀ x ∈[ 0, Ll − ε] ,
k(x, t1) ∀ x ∈ (Ll − ε, Ll] ,

(58)

where k(x, t1) such that∫
�ε
L

C(x)k(x, t1)dx − Cldk(Ll, t1) =
∫
�ε
L

C(x)P1(x, t1)dx + ClsP1(0, t1), (59)

P2,x = 0 at x = 0, CldP2,t = q(x,P2)P2,x at x = Ll (60)

for all t ∈ (t1, t2);

P1(x, t2) =
{

k̃(x, t2) ∀ x ∈[ 0, ε] ,
P2(x, t2) ∀ x ∈ (ε, Ll] ,

(61)

where k̃(x, t2) such that
ε∫

0

C(x)k̃(x, t2)dx + Clsk̃(0, t2) =
ε∫

0

C(x)P2(x, t2)dx − CldP2(Ll, t2). (62)

Let

P(x, t) =
{
P1(x, t) ∀ t ∈ (0, t1),
P2(x, t) ∀ t ∈[ t1, t2), (63)

be a solution to problem (55)–(60) for all t ∈ (0, t2) such that

P(x, t) = P(x, t + t2). (64)

Definition 3 A non-negative function P(x, t) is said to be a periodic solution of the
problem (55)–(60), i. e. P(x, t) = P(x, t + t2), if

P ∈ C
1
2 ,

1
4

x,t
(
Q̄t2

) ∩ L∞ (
0, t2;H1(�L)

)
, C

1
2 (x)Pt ∈ L2(Qt2),

q(x,P)Px ∈ L2
(
0, t2;H1(�L)

)
,
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and P(x, t) satisfies equation (55) in the sense that∫∫
Qt2

C(x)Ptφ dxdt −
∫∫
Qt2

(q(x,P)Px)xφ dxdt = 0

for any φ ∈ L2(Qt2) and φ(x, 0) = φ(x, t2).

Theorem 3 Assume that

C(x) ∈ C
(
�̄L
)
: infC(x) > 0, ‖C(x)‖1 < Cld; Cls � 0, Cld > 0;

infN(x) > 0, infA0(x) > 0, g(x, t1) ∈ C0 (�̄ε
L
)
,

and initial data P0(x) ∈ H1(�L) is non-negative satisfying∫
�L

q(x,P0)P20,xdx � 1
64πμ2|�L|

(Cld − ‖C(x)‖1)
C2
ld

inf
�L

∣∣∣N(x)A4
0(x)

C2(x)

∣∣∣ ,

M :=
∫
�L

C(x)P0(x)dx + ClsP0(0) > 0,

then the problem (55)–(60) admits a unique positive solution in the sense of Definition 3.

The proof of Theorem 3 is similar to that of Theorem 1.

Proof of Theorem 1

Note that the Eq. (35) becomes degenerate if P = − inf A0(x)
C(x) . Hence, we start by con-

structing a sequence of positive approximations of initial data P0n > 0. We can choose
for example P0n(x) = P0(x) + 1

n (if n → ∞ then P0n(x) → P0(x)). These approximations
allow us to apply the theoretical background developed for uniformly parabolic equations
to our problem. By taking n → ∞, as a limit, we obtain a weak solution P(x, t). We omit
some technical details and derive only a priori estimates which imply the existence of
this weak solution. We need to specify conditions on the smoothing functions f (x, t) and
f̃ (x, t) such that total volume is conserved on the whole time interval [ 0, t2].
Volume conservation: Integrating (35) onQt , due to (37) and (36), we arrive at∫

�r

C(x)P1(x, t)dx + ClsP1(0, t) =
∫
�r

C(x)P0(x)dx + ClsP0(0) =: M > 0 ∀ t ∈[ 0, t1).
(65)

Integrating (35) onQt
t1 , due to (40) and (38), we have∫

�r

C(x)P2(x, t)dx + CldP2(Lr , t1) =
∫
�r

C(x)P2(x, t1)dx + CldP2(Lr , t) ∀ t ∈[ t1, t2).
(66)
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By (65) and (66), we obtain∫
�r

C(x)P2(x, t)dx +
∫
�ε
r

C(x)(P1(x, t1) − f (x, t1))dx + Cld(f (Lr , t1) − P2(Lr , t)) =
∫
�r

C(x)P0(x)dx + Cls(P0(0) − P1(0, t1)).

(67)

Due to (39), from (67) we get∫
�r

C(x)P2(x, t)dx − CldP2(Lr , t) = M ∀ t ∈[ t1, t2). (68)

Moreover, by (41) and (68) we find that∫
�r

C(x)P1(x, t2)dx + ClsP1(0, t2) =

ε∫
0

C(x)f̃ (x, t2)dx +
Lr∫

ε

C(x)P2(x, t2)dx + Clsf̃ (0, t2) =

ε∫
0

C(x)
(
f̃ (x, t2) − P2(x, t2)

)
dx + CldP2(Lr , t2) + Clsf̃ (0, t2) + M,

whence, due to (42), we have∫
�r

C(x)P1(x, t2)dx + ClsP1(0, t2) = M. (69)

Consequently, total volume of the left heart and systolic circulation is identical at t = 0
and t = t2.
Below we show how to prove, using Moser’s method [20], that the blood pressure

P(x, t) stays bounded on the whole time interval [ 0, t2]. We start by showing that P(x, t)
is bounded in L∞ (

0, t2; L2(�r)
)
then we show that for any α > 0 the solution P(x, t) is

bounded in L∞ (
0, t2; Lα+2(�r)

)
and after that we take the limit α → ∞.

Boundedness:Multiplying (35) by P(x, t) and integrating along �r , due to (37), we have
1
2
d
dt

∫
�r

C(x)P2(x, t)dx +
∫
�r

q(x,P)P2xdx = −1
2
d
dt
[
ClsP2(0, t)

]
. (70)

Integrating (70) in time, we get
1
2

∫
�r

C(x)P2(x, t)dx + 1
2
ClsP2(0, t) +

∫∫
Qt1

0

q(x,P)P2xdxdt =

1
2

∫
�r

C(x)P20(x)dx + 1
2
ClsP20(0) =: K0 ∀ t ∈ (0, t1).

(71)

On the other hand, multiplying (35) by P(x, t) and integrating along �r , due to (40), we
have

1
2
d
dt

∫
�r

C(x)P2(x, t)dx +
∫
�r

q(x,P)P2xdx = 1
2
d
dt
[
CldP2(Lr , t)

]
, (72)
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and integrating (72) in time from t1, we have

1
2

∫
�r

C(x)P2(x, t)dx + 1
2
CldP2(Lr , t1) +

∫∫
Qt

t1

q(x,P)P2xdxdt =

1
2

∫
�r

C(x)P2(x, t1)dx + 1
2
CldP2(Lr , t) ∀ t ∈ (t1, t2).

(73)

By (68) withM > 0 we find that

CldP2(Lr , t) �
1
Cld

⎛
⎜⎝∫

�r

C(x)P(x, t)dx

⎞
⎟⎠

2

� ‖C(x)‖1
Cld

∫
�r

C(x)P2(x, t)dx ∀ t ∈ (t1, t2).

(74)

As a result, from (73), due to (74) and (71), we have

1
2

(
1 − ‖C(x)‖1

Cld

)∫
�r

C(x)P2(x, t)dx + 1
2
CldP2(Lr , t1)+

∫∫
Qt

t1

q(x,P)P2xdxdt �
1
2

∫
�r

C(x)P2(x, t1)dx �

K1 := K0 +
∫
�ε
r

C(x)
(
f 2(x, t1) − P21(x, t1)

)
dx ∀ t ∈ (t1, t2)

(75)

provided

1 − ‖C(x)‖1
Cld

> 0 ⇔ 0 <
‖C(x)‖1

Cld
< 1. (76)

Multiplying (35) by Pα+1(x, t) with α � 0 and integrating along �r and in time, we have∫
�r

C(x)Pα+2(x, t)dx + ClsPα+2(0, t) + (α + 1)(α + 2)
∫∫
Qt1

0

q(x,P)PαP2xdxdt =

∫
�r

C(x)Pα+2
0 (x)dx + ClsPα+2

0 (0) =: Kα ∀ t ∈ (0, t1),
(77)

(
1 −

( ‖C(x)‖1
Cld

)α+1
)∫

�r

C(x)Pα+2(x, t)dx + CldPα+2(Lr , t1)+

(α + 1)(α + 2)
∫∫
Qt

t1

q(x,P)PαP2xdxdt �
∫
�r

C(x)Pα+2(x, t1)dx �

Kα+1 := Kα +
∫
�ε
r

C(x)
(
f α+2(x, t1) − Pα+2

1 (x, t1)
)
dx ∀ t ∈ (t1, t2)

(78)

provided (76). Next by Moser’s method [20], taking into account that

sup
�r

|P| = lim
γ→+∞

⎛
⎜⎝ 1

|�r|
∫
�r

Pγ dx

⎞
⎟⎠

1
γ

,
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due to the periodicity and infC(x) > 0, from (78) we obtain

sup
�r

|P| � K < +∞ ∀ t > 0, (79)

provided sup
�ε
r

|f (x, t1)| < +∞ and 0 <
‖C(x)‖1
Cld

< 1.

Now we obtain the main a priori estimates for the gradient Px in L∞ (
0, t2; L2(�r)

)
and

for the time derivative Pt in L2(Qt2). Using these estimates we are able to build a weak
solution for the problem at hand.
A priori estimate:Multiplying (35) by Pt and integrating along �r , we have

1
2
d
dt

∫
�r

q(x,P)P2xdx +
∫
�r

C(x)P2t dx =

∫
�r

(
N(x)q(x,P)

8πμ

) 1
2 P2xC(x)Ptdx + Ptq(x,P)Px

∣∣∣∣
Lr

0
,

(80)

whence, due to (37),

1
2
d
dt

∫
�r

q(x,P)P2xdx +
∫
�r

C(x)P2t dx + Cls(P(0, t))2t =
∫
�r

(
Nq
8πμ

)1/2
P2xC(x)Ptdx �

sup
�r

|q(x,P)Px|
⎛
⎜⎝∫

�r

C(x)P2t dx

⎞
⎟⎠

1
2

sup
�r

∣∣∣∣C(x)N(x)
q(x,P)2

∣∣∣∣
1
2

⎛
⎜⎝∫

�r

q(x,P)P2xdx

⎞
⎟⎠

1
2

�

sup
�r

∣∣∣∣C2(x)|�r|N(x)
πq(x,P)2

∣∣∣∣
1
2

⎛
⎜⎝∫

�r

C(x)P2t dx

⎞
⎟⎠
⎛
⎜⎝∫

�r

q(x,P)P2xdx

⎞
⎟⎠

1
2

(81)

for all t ∈ (0, t1). Let us denote by

y(t) := 1
2

∫
�r

q(x,P)P2xdx, a(t) :=
∫
�r

C(x)P2t dx, b(t) := Cls(P(0, t))2t .

Then from (81) and using that q ≥ 1
8πμ

NA2
0 we find that

y′(t) + b(t) � a(t)
(
C1y

1
2 (t) − 1

)
, (82)

where

C1 = sup
�r

∣∣∣∣∣64πμ2|�r|C2(x)
N(x)A4

0(x)

∣∣∣∣∣
1
2

.

Indeed, taking into account

1
4πμ

inf
�r

(
N(x)A2

0(x)
)
y(t) �

∫
�r

q(x,P)2 P2xdx �

( |�r|
π

)2 ∫
�r

(q(x,P)Px)2xdx �
( |�r|

π

)2
sup
�r

(C(x))a(t),
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i. e.

a(t) � C2y(t), whereC2 = π

4μ|�r|2 inf
�r

(
N(x)A2

0(x)
C(x)

)
, (83)

from (82) we get

y′(t) + b(t) � C2y(t)
(
C1y

1
2 (t) − 1

)
, (84)

provided y(0) < 1
C2
1
. So,

y1(t) �
β2y1(0)(

y
1
2
1 (0) +

(
β − y

1
2
1 (0)

)
e

αβ
2 t
)2 ∀ t ∈[ 0, t1) ify(0) < β2,

where α = C1C2 and β = 1
C1
.

Similar to (81), for all t ∈ (t1, t2) we deduce that

1
2
d
dt

∫
�r

q(x,P)P2xdx +
∫
�r

C(x)P2t dx �

Cld(P(Lr , t))2t + sup
�r

∣∣∣∣C2(x)N(x)|�r|
πq(x,P)2

∣∣∣∣
1
2

⎛
⎜⎝∫

�r

C(x)P2t dx

⎞
⎟⎠
⎛
⎜⎝∫

�r

q(x,P)P2xdx

⎞
⎟⎠

1
2

.

(85)

Let us denote by

d(t) := Cld(P(Lr , t))2t .

Then from (85) we find that

y′(t) � a(t)
(
C1y

1
2 (t) − 1

)
+ d(t). (86)

By the volume conservation (68), we arrive at

d(t) = 1
Cld

⎛
⎜⎝∫

�r

(C(x)P)tdx

⎞
⎟⎠

2

� ‖C(x)‖1
Cld

∫
�r

C(x)P2t dx = ‖C(x)‖1
Cld

a(t). (87)

Due to (83) and (87), from (86) we get

y′(t) � C2y(t)
(
C1y

1
2 (t) − C3

)
(88)

provided y(t1) <
(
C3
C1

)2
, where C3 = 1 − ‖C(x)‖1

Cld
> 0. So,

y2(t) �
γ 2y2(t1)(

y
1
2
2 (t1) +

(
γ − y

1
2
2 (t1)

)
e

αβ
2 (t−t1)

)2 ∀ t ∈[ t1, t2) ify(t1) < γ 2,
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where α = C1C2 and γ = C3
C1

< β . By the periodicity y2(t2) = y1(0), we get

e
αβ
2 t2 �

y
1
2
2 (t1)

(
γ−y

1
2
1 (0)

)

y
1
2
1 (0)

(
γ−y

1
2
2 (t1)

)e αβ
2 t1 �

y
1
2
2 (t1)

(
γ−y

1
2
1 (0)

)

y
1
2
1 (0)

(
γ−y

1
2
2 (t1)

) y
1
2
1 (0)

(
β−y

1
2
1 (t1)

)

y
1
2
1 (t1)

(
β−y

1
2
1 (0)

) =

γ − y
1
2
1 (0)

β − y
1
2
1 (0)

y
1
2
2 (t1)

(
β − y

1
2
1 (t1)

)

y
1
2
1 (t1)

(
γ − y

1
2
2 (t1)

) ⇒ t1 < t2 � T∗ := 2
αβ

ln

⎡
⎢⎢⎣

y
1
2
2 (t1)

(
β − y

1
2
1 (t1)

)

κy
1
2
1 (t1)

(
γ − y

1
2
2 (t1)

)
⎤
⎥⎥⎦ ,

where κ := β−y
1
2
1 (0)

γ−y
1
2
1 (0)

> 1, provided

y2(t1) >
γ 2κ2eαβt1 y1(t1)(

β+
(

κe
αβ
2 t1−1

)
y
1
2
1 (t1)

)2 , y1(0) < γ 2 and ‖C(x)‖1
Cld

< 1.

As a result, we obtain the main a priori estimate

1
2

∫
�r

q(x,P)P2xdx +
∫∫
Qt

C(x)P2t dx � C0 < ∞, (89)

for all t ∈ (0, t2).
Now we show that the solution constructed above is unique. We use a proof by

contradiction.
Uniqueness: Let u and v be two solutions to the problem (35)–(40). Let us denote by

w = u − v satisfying

C(x)wt =
(
q(x,u)wx + 1

2
(qu(x,u) + qv(x, v))wvx

)
x

(90)

with initial data w(x, 0) = 0. (91)

Multiplying (90) by w(x, t) and integrating along �r , due to (37), we have

1
2
d
dt

∫
�r

C(x)w2(x, t)dx + 1
2
d
dt
[
Clsw2(0, t)

]+
∫
�r

q(x,u)w2
xdx =

−
∫
�r

1
2
(qu(x,u) + qv(x, v))vxwwxdx �

1
2

⎛
⎜⎝∫

�r

q(x,u)w2
xdx

⎞
⎟⎠

1
2

sup
�r

|q(x, v) vx| sup
�r

[
(qu(x,u) + qv(x, v))2

C(x)q(x,u)q2(x, v)

] 1
2

⎛
⎜⎝∫

�r

C(x)w2(x, t)dx

⎞
⎟⎠

1
2

(92)

for all t ∈ (0, t1). Using Cauchy inequality, boundedness of u and v, q(x, v) vx ∈
L2
(
0, t1;H1(�r)

)
, due to Grönwall lemma, we get∫

�r

C(x)w2(x, t)dx � 0 ⇒ w(x, t) = 0 ∀ t ∈ (0, t1). (93)
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On the other hand, multiplying (90) by w(x, t) and integrating along �r , due to (40), we
have

d
dt

∫
�r

C(x)w2(x, t)dx +
∫
�r

q(x,u)w2
xdx �

d
dt
[
Cldw2(Lr , t)

]+ C̃ sup
�r

|q(x, v) vx|2
∫
�r

C(x)w2(x, t)dx
(94)

for all t ∈ (t1, t2), where C̃ > 0. As∫
�r

C(x)w(x, t)dx = Cldw(Lr , t) ∀ t ∈ (t1, t2),

then

Cldw2(Lr , t) = 1
Cld

⎛
⎜⎝∫

�r

C(x)w(x, t)dx

⎞
⎟⎠

2

� ‖C(x)‖1
Cld

∫
�r

C(x)w2(x, t)dx ∀ t ∈ (t1, t2).

(95)

So, integrating (94) in time from t1 to t, using (95), we have(
1 − ‖C(x)‖1

Cld

)∫
�r

C(x)w2(x, t)dx + Cldw2(Lr , t1) +
∫∫
Qt

t1

q(x,P)P2xdxdt �

C̃
t∫

t1

sup
�r

|q(x, v) vx|2
∫
�r

C(x)w2(x, t)dxdt ∀ t ∈ (t1, t2)

(96)

provided ‖C(x)‖1 < Cld. Applying Grönwall lemma to (96), we get w(x, t) = 0 for all
t ∈ (t1, t2). As a result, we obtain that w = 0 ⇔ u = v for all t ∈ (0, t2).

Conclusions
Two mathematical models of the Fontan circulation have been proposed, a spatially
homogenous ODE model and a spatially inhomogeneous PDE model. These models rep-
resent the first step towardsmodelling blood flow in the Fontan circulation and improving
our understanding of Fontan failure. Using the spatially homogeneous ODE model, we
were able to show changes in cardiac output in response to changes in pulmonary vascular
resistance, and changes in the ventricular pressure-volume loop in response to changes in
pulmonary vascular resistance and heart rate. In particular for the cardiac output, there
was an inflection point in the data that suggests the possibility of two different models
regimes, which could potentially be healthy and failing Fontan circulation. Further inves-
tigation is needed to understand the significance of this inflection point. For the spatially
inhomogeneous PDE model, we were able to prove the existence and uniqueness of a
non-negative solution as the first step towards developing this model.
One of the challenges in modelling the Fontan circulation is the lack of large datasets,

particular for failing Fontan circulation, in part due to the variety of failure modes. One
possible use for these models going forward is in the generation of synthetic testing data
for a large range of model parameters in both healthy and failing Fontan scenarios. By
solving thousands of forward problemwith different parameter values, we can identify the
sensitivity of the model outputs to individual parameters and the corresponding ranges of
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these parameters that yield results in the healthy and failing Fontan regimes. By refining
and classifying the data into the two regimes, we can generate synthetic data for healthy
and failing Fontan cases. By identifying the most sensitive parameters and the magnitudes
of these parameters that indicate the initiation of Fontan failure, we can inform the clin-
icians who care for these patients regarding which parameters should be collected and
analysed.
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