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Abstract
A blind source signal separation problem that was brought to a Study Group in
Limerick in 2013 required a way to prevent the gait of a jogger from masking the
heartbeat, when detected by a simple photodiode that measures light transmission
through a jogger’s wrist tissues. The group was successful in discovering a singular
value decomposition (SVD) approach, which not only allows accurate detection of
heart rate but also allows recovery of a good facsimile of the entire blood pressure time
series from the mixed photodiode signal.
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Introduction
We consider a blind source signal separation problem that was brought to the European
Study Group with Industry held in June 2013 at the University of Limerick. The problem
arises when considering how to detect heart rate in a simple non-intrusive way while
walking or jogging.
Specifically, a very simple heart rate monitor was considered, based on a single wrist

device similar to that pictured in Fig. 1 that does not require a separate transmitting chest
band. The device is to contain a single channel photodiode mounted against the skin
so that light reaching it has to travel through wrist tissue, which detects changes in the
intensity of the light that reaches it, and a processor chip to analyse the single-channel
signal and display the heart rate detected. The light reaching the photodiode is affected
mainly by two things, variation in the perfusion1 of the tissues through which it passes
and variation in the incident intensity on the skin surface surrounding the monitor. The
first effect is due to varying blood pressure, which causes a pulsatile2 perfusion of body
tissues, hence a pulsatile variation in the absorption of the light that travels from skin
through tissue to the photodiode. The second effect, which masks the first, is due to the
gait of a person, walking or running perhaps, moving the wrist and causing the light levels
incident upon the skin to vary rhythmically. The periods of these two effects are usually
very close. Walking is typically about one step per second, and walking heart rate is about
60 beats per minute. Running gait may be three times as fast, and running heart rate is
usually also similar to gait at about 180 beats per minute.
Although no data was available for the Study Group to assess, we were advised that

in prototypes, the gait was masking detection of heart rate, so that the instrument was
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Fig. 1 A heart rate monitor

reporting running rate rather than the desired heart rate. The Group was asked to inves-
tigate and assess ways to process the time series and separate the heart rate out of the
combined signal coming from the photodiode.
The problem then is to separate two time series signals with the same or similar peri-

ods but with different characteristic structures or wave shapes in time, when they are
presented as a single combination. The input thus comprises a single combined signal,
and the required output is the recovery of the two initial signals. In the literature, this is
referred to as blind source separation. Some information about the sources is needed to
do this. For example, in the case of two voices recorded in one channel, if one voice is
deeper than the other, it is possible to model the footprint of each voice in the frequency
domain by assuming a certain shape to the power spectrum, fit the shapes to the observed
power spectrum, and subtract out each voice in turn [1]. Or, in the case of recording the
heartbeat of a pregnant woman, if the fetal heart rate is higher than the mother’s heart
rate, this can be leveraged to extract it from a mixed signal obtained from a passive sound
sensor on the mother’s abdomen [2].
It is noted in Syed et al. [3] that blind source separation problems are considered

tractable if they involve linear mixtures of the sources and that it is necessary to know
something about the structure of the sources or something about the mixing matrix that
combines them. In particular, if the sources are statistically independent random signals,
independent component analysis (ICA) is effective, or if the sources are nonnegative,
matrix factorisation is effective, or if the sources are sparse, a sparse component analysis
can be effective.
In a review of blind source separation (BSS) methods, Jutten and Karhunen [4] note

that linear problems with random sources with no temporal structure are routinely solved
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using ICA. However, where there is temporal structure (as here), or worse, nonlinear
combinations of sources (as here), BSS problems require additional prior information.
Indeed, they point out that BSS ‘is simply impossible for general nonlinear transforma-
tions by resorting to statistical independence only without additional constraints or prior
information’. Furthermore, their development is for random signals, which is not a good
description of our problem.
Gao et al. [5] consider separating a single signal into foetal and maternal ECG sources

and use a combination of approaches. They first compute a spectrogram of the com-
bined signal, then use singular value decomposition (SVD, described in more detail later)
to smooth the spectrogram by retaining the first k singular values and left and right
eigenvectors. Then, they use ICA on the right singular eigenvectors, generate new left
eigenvectors, and use ICA on those separately. They note that this involves the crucial
assumption that the spectral components of foetal and maternal signals are independent
random variables. Then, they select the two most significant new components and test
how well they represent the maternal and foetal blind sources. Since they are working in
frequency space (evolving slowly with time), they are leveraging the different spectra of
the two sources—foetal ECG is typically higher frequency than maternal. They note that
straight SVD does not do as well at their combination approach, at detecting foetal heart-
beats. Their method does not reproduce a foetal source component and only broadly
locates foetal heartbeats in time.
A similar approach is taken by Murata et al. [6], who seek to separate voices in a con-

versation recorded by one microphone. They start with the windowed Fourier transform,
then seek to diagonalise the correlation functions. These need to be weakly stationary.
The position of ICA as a new paradigm for BSS, and issues involving stability and con-

vergence, and the number of signals having to be greater than or equal to the number of
sources (which is not the case here), and ways around the need for linearity, are discussed
in the special issue of Neurocomputing edited by Amari et al. [7].
After the work discussed in this paper was done, we were alerted to a little-known paper

by Fowler et al. [8], which recommends a similar procedure to the one we find here to be
so effective. However, Fowler et al. were investigating a different problem to filter different
oscillations in data from the respiration of children in quiet and REM sleep. The filtering
is to assist in diagnosis of ailments and to warn of incipient sudden infant death syndrome.
In their work, a careful choice of lag is made when embedding data in a phase space, then
SVD is applied to smooth the data in preparation for diagnosis. While the approach is
similar in style to ours, there is no attempt or need to separate blind source signals in [8].
In the remainder of this paper, we will indicate how we overcame the shortcoming of

there being no data available by creating an ersatz set of data incorporating two sources
(gait and blood pressure), we discuss embedding our ersatz data in a high dimensional
phase space, and we show how the use of SVD can not only prevent the gait source from
masking heart rate, but how we can recover a remarkably good facsimile of the original
blood pressure source.

Methods
Ersatz data

The group found some high-resolution arterial blood pressure data that would serve as
a proxy for perfusion of tissue (Fig. 2) [9]. The Beer-Lambert law for light transmission
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Fig. 2 a A typical arterial blood pressure signal, P(t), [9] and b an ersatz signal generated from P using the

Beer-Lambert Law, I(t) = [1 + 0.05 sin (7t)] e−
0.05P(t)
max(P(t))

through an absorbing medium was then used together with a simple assumed formula
for the effect of gait on incident light intensity to manufacture an ersatz data set that we
could use to test our ideas on separating the heart signal from the gait signal.

The Beer-Lambert law

The Beer-Lambert law gives the transmitted intensity of light I(t) when the light of inci-
dent intensity I0(t) passes through an absorbing medium. Here, we modify it slightly to
relate transmitted light intensity to blood pressure, as

I(t) = I0(t)e−λP(t), (1)

where P(t) is the blood pressure and λ is to convert the blood pressure to effective
absorption by the tissue.
Figure 2 shows a typical arterial blood pressure signal, P(t), on the left and a signal

generated from P using Eq. (1), in the particular form

I(t) = [1 + 0.05 sin (7t)] e−
0.05P(t)
max(P(t)) ,

on the right. Noting that gait and heartbeat have similar frequencies, the period of the
sine function representing a realistic gait has been chosen to approximately match the
average frequency of the blood pressure data P(t), and the amplitudes in the exponent
and of the sine are motivated by anticipated signal-to-noise ratios of 5 %. Note that the
blood pressure signal has a small variation in frequency, or in particular the time between
peak pressures which can be used to give a beat-to-beat heart rate, over the time period
used. Our study is based on this ersatz data set. It has the advantage that we know the
input signals, so we can assess how well our blind source separate technique works.

Results and discussion
Spectral characteristics

The group was interested in whether a spectrogram might indicate characteristics of the
combined signal in the frequency domain that differed in some way from the pressure
signal. Figure 3a displays a spectrogram of light intensity corresponding to light intensity
I(t). Figure 3b shows a spectrogram of the blood pressure signal, P(t).
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Fig. 3 a A spectrogram of the blood pressure signal, P(t), and b a spectrogram of the light intensity from the
Beer-Lambert law I(t)

It is difficult to conclude anything from these spectrograms. The periods in both do not
appear to vary much, although the blood pressure period does appear to vary from beat
to beat in the time series plot. There is a more apparent jump in the colors of the blood
pressure spectrogram at times that correspond to the rapid rise in pressure associated
with systole, compared to the gentler sine-dominated oscillations of I(t).
Spectral techniques are designed for linear systems and rely on a frequency difference.

So next, we attempted a phase plane reconstruction [10] to see how we could leverage
differences in temporal structure of the smooth gait and sharper blood pressure. Such
techniques are motivated and based on the theory of dynamical systems, and the time
evolution is defined in an appropriate phase space.

Phase space reconstruction

Our time series may be regarded as a sequence of measurements obtained from a dynam-
ical system. The established approach is to embed the time series onto a trajectory
in a finite dimensional space. It has been demonstrated under quite general circum-
stances that the reconstructed trajectory is topologically equivalent to the trajectory in
the unknown space in which the original trajectory is living. The particular method used
here is the method of delays, based on the idea of a delay register [10, 11].
To do this, we choose an embedding dimension and a time lag or delay. Embedding

theorems guarantee faithful reproduction of the trajectory if the embedding dimension
is larger than twice the number of active degrees of freedom, regardless of how large
the dimensionality of the true space is. The delay is not the subject of the embedding
theorems since they consider data with infinite precision. In practice, the time delay must
be found by experimentation: no rigorous way of establishing its optimal value has been
determined [8, 12].
If the delay is small compared to the intrinsic time scales of the system, successive ele-

ments of the delay vectors are strongly correlated. However, if it is too small, there is
almost no difference between the different elements of the delay vectors; if it is large
enough, the different coordinates may be almost uncorrelated, or independent, provid-
ing a topologically correct view of dynamical behaviour. Delays are fed into the register
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and propogate sequentially until they are lost at the other end n clock cycles later. At any
instant, the register thus contains n consecutive data values (vi, vi−1, . . . vi−n).
Each sequence of data points can be thought of as an n-dimensional vector, usually

written as a column vector. The sequence of n-vectors generated by clocking the data
through the delay register can be thought of as a discrete trajectory in an n-dimensional
Euclidean space. If the signal arises from a finite-dimensional deterministic system, then
provided the embedding dimension is sufficiently large, the trajectory gives a genuine
image of the dynamics in its own phase space.
We then reconstructed a two-dimensional phase space view of our data in this way,

using the ersatz values of I(t) created using the Beer-Lambert law. The results appear in
Fig. 4, with a choice of lag of about 1/4 of the main period present in the signal, which
also is close to the first zero of the autocorrelation of I(t). The large D-shaped structure
is reminiscent of the ellipse we would obtain if we used only the gait signal to create the
two-dimensional trajectory, so we associate the D-shape with gait. The small loops seen
at various places on the straight line part of the D we associate with heartbeats.
The appearance of this phase space reconstruction led us to think about ways to

remove the larger D-shaped behaviour from the signal, then leaving behind mostly the
effects of the blood pressure. Although we are motivated by a two-dimensional projec-
tion of the trajectory, we now consider a higher dimensional phase space, acknowledging
that the dimension needs to be high enough to obtain a topologically equivalent trajec-
tory. The results of the remarkably effective SVD method are detailed in the following
sections.

Singular value decomposition

The set of all delay vectors forms an ellipsoidal cloud in the Euclidean space and we
wish to establish and then remove the two most important directions associated with the

Fig. 4 A two-dimensional phase-space reconstruction of I(t), using a lag k of about 1/4 of the main period
present, and obtained by plotting In+k vs In for k = 1, 2, . . .
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data, as these will correspond to the D shape seen in Fig. 4. The procedure continues by
subtracting off the mean value from each column vector creating a new set xi and then
diagonalising the covariance matrix

1
N

N∑

i=1
xixTj .

This is related to the singular value decomposition of a trajectory matrix M which has
rows consisting of the row vectors xTi . The covariancematrix is actually the productMTM
and the right singular vectors are the eigenvectors of the covariance matrix. The matrix
is real and symmetric, hence its eigenvalues are real and its eigenvectors are orthogonal.
Mathematically, the singular values of M are the square roots of the eigenvalues of the
covariance matrix.
Finding the singular vectors corresponds to finding the semi-major axes of the data

cloud generated in the embedded phase space by the trajectory, and the singular values
are then related to the lengths of these axes. Thus, the singular vectors give a geometric
description of where the trajectory lies, and the singular values are a measure of the extent
of the trajectory in the corresponding directions. The most relevant directions in space
relate to the vectors corresponding to the largest eigenvalues; directions associated with
small eigenvectors may be neglected.

Fig. 5 SVD numerical results using a gait of the same average period as blood pressure. The first curve is
blood pressure, the second is the gait, the third is the recorded signal I(t), the fourth is the result of removing
the largest singular value from I(t), and the last is the result of also removing the next largest singular value
from I(t)
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The most relevant directions in space are given by the eigenvectors corresponding to
the largest eigenvalues. The group thought that the SVDmight then identify the twomost
important axes as those associated with the D-shape seen in two dimensions and allow us
to remove those dimensions from the data.
The first step in using SVD is to create a matrix M, each row of which is the vector

(Ik+1, Ik+2, . . . , Ik+n), with the first row having k = 0, the second k = n + 1, the third
k = 2n + 1, etc. We generated as many rows as the data allowed, say m rows. In the
standard approach, each row is then averaged separately, and the average is subtracted
from that row to create a normalised M matrix. This moves the origin in phase space to
the middle of the ellipsoid. In fact, we found that we obtained better results if we did not
normalise the matrixM.
The SVD decomposes the matrixM as

Mmn = UmmSmnVT
nn,

where UTU = I,VTV = I; the columns of U are orthonormal eigenvectors of MMT ;
the columns of V are orthonormal eigenvectors of MTM; and S is a diagonal matrix
containing the singular values ofM in descending order.
In order to remove the D-shape seen in two dimensions, we set the two biggest singular

values in S to zero. We then compute a new M matrix using the modified S matrix and

Fig. 6 SVD numerical results as in Fig. 5, except that the period of the gait effect has been increased by about
half
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the same matrices U and V as obtained from the original M matrix. This new M matrix
then gives a time series that should represent or capture the notches in I(t).
Figure 5 shows the blood pressure data, the gait data, the composite signal I(t), the

result (the residual) of removing just the most singular value from the time series by set-
ting the first singular value in S to zero, and the result of also removing the second most
singular value from I(t). Note that the remaining time series has a pulse of activity located
exactly at each place that blood pressures rise to systole. Figure 6 shows the result of
repeating this analysis when the gait has a period that is about 50 % longer than before.
SVD seems to work just as well, in locating the places where blood pressure rises, that is,
in finding heart rate.
Figure 7 shows more detail of just the blood pressure curve and the result of removing

the twomost singular values, otherwise the same case as in Fig. 5. Figure 8 shows a closeup
view of the blood pressure signal over one period, superposed with the combined I(t)
signal and the result of removing the two most singular values from that signal. Note the
increased amplitude of the oscillations in this ‘after SVD’ data at the place where blood
pressure rises suddenly to systole.
In fact, we discovered that it is possible to recover curves that look just like the original

blood pressure data, by first rectifying and then smoothing the residual signal obtained
after removing the two most singular values. As illustrated in Fig. 9, the resulting signal
looks a lot like the original blood pressure data before modifying with the Beer-Lambert
law. That is, buried in the apparently noisy SVD result is the original blood pressure data.
Removing the two most singular values from the composite signal I(t), then rectifying

Fig. 7 Comparison of original blood pressure signal and the result of removing the two most singular values
from the SVD of the combined signal I(t). This is a different view of the same case as in Fig. 5
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Fig. 8 A closeup look at the blood pressure P(t), the combined signal I(t), and the SVD result after removing
the two most singular values, over a period of one heartbeat. This is a different view of the same case as in
Fig. 5. The x-axis represents a time index for time t = 0..1 s, and the y-axis represents re-scaled values of three
signals P(t), I(t), and the SVD result

and smoothing, gives a filtered signal that looks very like the desired blood pressure curve
and will give correct heartrate values. More extensive testing is required to be sure of the
general efficacy of this approach, but it looks very promising and is visually compelling.
We found that it is not sensitive to the length of vectors n chosen to make the matrix M
from the time series.

Fig. 9 a The raw remainder signal after removing the two most singular values from I(t). b The rectified
signal (a). c The smoothed signal (b). d The original blood pressure signal, P(t). Note the similarity between
the original blood pressure signal and the smoothed rectified SVD result
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Conclusions
A point of difference is needed, either in the time domain or in the frequency domain,
to separate blind sources. For example, different frequency footprints can be used to
reconstruct signals (male/female voices), or different appearance in the time domain, like
notches, give some hope of distinguishing two mixed signals. In the present paper, we are
leveraging the difference in scale of the two component signals.
Our use of the SVD appears to be very effective in the time domain, for extracting a

time series from the Beer-Lambert law data, that looks very similar to the blood pressure
data used as one of the sources when generating the data for light intensity I(t) as mea-
sured by a photodiode. Apparently removing the two most singular values in the SVD
approach can recover the blood pressure signal, with no specific prior knowledge of shape
required. This approach needs to be explored further, with other shapes used for gait and
with plethysmograph data for perfusion of finger tissue, or even better with actual data
obtained from a photodiode worn by an active person.
This approach does not require linearity in the way that signals are combined or that

the periods of the two signals be very different, just that the nature of the blind source
signals be temporally different. In principle, it can be extended to separating more than
two sources, provided that two singular values are used to remove each source in turn.
This in itself is an assumption about the nature of the sources that they be essentially
two-dimensional in nature.

Endnotes
1Perfusion is the delivery of blood to a capillary bed in biological tissue.
2Pulsatile means rhythmic.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
This is an equal collaboration between the authors. All authors have read and approved the manuscript.

Acknowledgements
We are grateful for the support of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie)
funded by the Science Foundation Ireland (SFI) investigator award 12/IA/1683 and the SFI conference and workshop
grant 13/CW/12578.

Author details
1MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland. 2School of Mathematics and
Statistics, Victoria University of Wellington, Wellington, New Zealand. 3MACSI, Department of Mathematics and Statistics,
University of Limerick, Limerick, Ireland. 4Analog Devices, Raheen Industrial Estate, Limerick, Ireland.

Received: 5 November 2015 Accepted: 15 May 2016

References
1. Kristjansson T, Attias H, Hershey J (2004) Single microphone source separation using high resolution signal

reconstruction. Acoustics, Speech, and Signal Processing, 2004. In: Proceedings ICASSP ’04; IEEE International
Conference on 17-21 May 2004 Vol. 2. pp 817–820. doi:10.1109/ICASSP.2004.1326383

2. Acharyya R, Scott NL, Teal PL (2009) Non-invasive foetal heartbeat rate extraction from an underdetermined single
signal. Health 1(2):111–116

3. Syed MN, Georgiev PG, Pardalos PM (2014) A hierarchical approach for sparse source blind signal separation
problem. Comput Oper Res 41:386–398

4. Jutten C, Karhunen J (2004) Advances in blind source separation (BSS) and independent component analysis (ICA)
for nonlinear mixtures. Int J Neural Syst 14(5):267–292

5. Gao P, Chang E, Wyse L (2003) Blind separation of fetal ECG from single misture using SVD and ICA. Information,
Communications and Signal Processing, 2003 and Fourth Pacific Rim Conference on Multimedia. In: Proceedings of
the 2003 Joint Conference of the Fourth International Conference on 15-18 Dec. 2003 (ICICS-PCM) Vol. 3.
pp 1418–1422. doi:10.1109/ICICS.2003.1292699

www.macsi.ul.ie
http://dx.doi.org/10.1109/ICASSP.2004.1326383
http://dx.doi.org/10.1109/ICICS.2003.1292699


Vo et al. Mathematics-in-Industry Case Studies  (2016) 7:2 Page 12 of 12

6. Murata N, Ikeda S, Ziehe A (2001) An approach to blind source separation based on temporal structure of speech
signals. Neurocomputing 41:1–24

7. Amari S-I, Hyvarinen A, Lee S-Y, Lee T-W, Sanchez AVD (2002) Blind signal separation and independent component
analysis. Neurocomputing 49:1–5

8. Fowler AC, Kember G, Johnson P, Walter SJ, Fleming P, Clements M (1994) A method for filtering respiratory
oscillations. J Theor Biol 170:273–281

9. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCH, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE
(2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic
signals. Circulation 101(23):e215—e220. http://physionet.org/physiobank/database/fantasia/

10. Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys 20(3):167–192
11. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica 20D:217–236
12. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://physionet.org/physiobank/database/fantasia/

	Abstract
	Keywords

	Introduction
	Methods
	Ersatz data
	The Beer-Lambert law

	Results and discussion
	Spectral characteristics
	Phase space reconstruction
	Singular value decomposition

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

